Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
J Orthop Res ; 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38460961

Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1ß and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1ß and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.

2.
J Biomed Mater Res A ; 112(3): 421-435, 2024 03.
Article En | MEDLINE | ID: mdl-37964720

Focal chondral defects (FCDs) significantly impede quality of life for patients and impose severe economic costs on society. One of the most promising treatment options-autologous matrix-induced chondrogenesis (AMIC)-could benefit from a scaffold that contains both of the primary cartilage matrix components-sulfated glycosaminoglycans (sGAGs) and collagen type II. Here, 17 different protocols were evaluated to determine the most optimum strategy for decellularizing (decelling) the bovine nucleus pulposus (bNP) to yield a natural biomaterial with a cartilaginous constituency. The resulting scaffold was then characterized with respect to its biochemistry, biomechanics and cytocompatibility. Results indicated that the optimal decell protocol involved pre-crosslinking the tissue prior to undergoing decell with trypsin and Triton X-100. The residual DNA content of the scaffold was found to be 32.64 ± 9.26 ng/mg dry wt. of tissue with sGAG and hydroxyproline (HYP) contents of 72.53 ± 16.43. and 78.38 ± 8.46 µg/mg dry wt. respectively. The dynamic viscoelastic properties were found to be preserved (complex modulus: 17.92-16.62 kPa across a range of frequencies) while the equilibrium properties were found to have significantly decreased (aggregate modulus: 11.51 ± 9.19 kPa) compared to the non-decelled fresh bNP tissue. Furthermore, the construct was also found to be cytocompatible with bone marrow stem cells (BMSCs). While it was not permissive of cellular infiltration, the BMSCs were still found to have lined the laser drilled channels in the scaffold. Taken together, the biomaterial developed herein could be a valuable addition to the AMIC family of scaffolds or serve as an off-the-shelf standalone option for cartilage repair.


Cartilage, Articular , Nucleus Pulposus , Humans , Animals , Cattle , Tissue Scaffolds/chemistry , Quality of Life , Cartilage , Biocompatible Materials , Chondrogenesis , Tissue Engineering/methods
3.
J Orthop Res ; 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38084765

Intervertebral disc (IVD) degeneration (IVDD) has become increasingly prevalent and is a common contributing factor to low back pain. Current treatment options are limited to either symptom management or surgery. A promising treatment option being explored is intradiscal administration of mesenchymal stromal cells (MSCs). However, there remains a gap in knowledge as to whether MSCs from different tissue sources have similar responses to the low pH microenvironment of the IVD and the possible mechanisms governing these responses. To study this, MSCs from three different tissue sources: adipose (adipose-derived mesenchymal stem cell), bone marrow (bone marrow mesenchymal stem cells), and amnion (amniotic membrane mesenchymal stem cell) were cultured at low pHs representative of IVDD. MSCs were assessed for survival, senescence, apoptosis, metabolic activity, and cytokine release profile. Additionally, western blot was utilized to assess acid sensing ion channel 1 and 3 expression. The results of this study indicated that MSC viability, cell proliferation, senescence, and metabolic activity is negatively affected by low pH and alters MSC cytokine production. This study also demonstrated that MSCs behavior is dependent on tissue source. Understanding how MSC behavior is altered by pH will allow further research aimed at increasing the efficacy of MSC therapy to promote in situ IVD tissue regeneration to combat IVDD.

4.
Am J Vet Res ; 84(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37739392

OBJECTIVE: The objectives of the current study were to quantify laying hen sternal carina (keel) and tibiotarsal bone and muscle quality using clinical CT, tissue level, and biomechanical measures; test associations among muscle transverse sectional area, bone mineral density, and biomechanical measures of bone quality; and determine whether CT measures of bone and muscle quality would be predictive of biomechanical measures of tibiotarsal bone quality. ANIMALS: 60 40-week-old Hy-Line brown laying hens were used. METHODS: Associations among CT imaging, tissue level, and biomechanical measures of tibiotarsal and keel bone and muscle quality were tested using multivariate correlational analyses. Bivariate and generalized regressions were performed to determine whether CT measures were predictive of biomechanical measures of tibiotarsal bone quality. RESULTS: Low positive correlations were identified between tibiotarsal muscle transverse-sectional area (cross-sectional area [CSA]) and bone mineral density (BMD) in the proximal location of the bone (r = -0.11 to 0.31). Tibiotarsal muscle CSA was also low to moderately correlated with biomechanical measures of bone quality (r = 0.20 to 0.41). Keel muscle CSA values were not correlated with keel BMD values, but they were correlated with biomechanical measures of tibiotarsal bone quality (r = 0.18 to 0.40). Keel CT measures of bone quality were not correlated with tibiotarsal CT measures of bone quality. At the proximal location, muscle CSA and tibiotarsal BMD were predictive of biomechanical failure load (F = 9.68, P = .0003muscle CSA; F = 9.13, P = .004tibiotarsal BMD). CLINICAL RELEVANCE: Findings supported using noninvasive CT measures of muscle and bone quality in longitudinal research studies evaluating the effects of interventions on laying hen welfare.


Bone and Bones , Chickens , Animals , Female , Bone Density , Tomography, X-Ray Computed/veterinary , Muscles , Housing, Animal
5.
Acta Biomater ; 171: 1-18, 2023 11.
Article En | MEDLINE | ID: mdl-37708926

Intrinsically present bioactive cues allow naturally derived materials to mimic important characteristics of cartilage while also facilitating cellular recruitment, infiltration, and differentiation. Such traits are often what tissue engineers desire when they fabricate scaffolds, and yet, literature from the past decade is replete with examples of how most natural constructs with native biomolecules have only offered sub-optimal results in the treatment of cartilage defects. This paper provides an in-depth investigation of the performance of such scaffolds through a review of a collection of natural materials that have been used so far in repairing/regenerating articular cartilage. Although in vivo and clinical studies are the best indicators of scaffold efficacy, it was, however, observed that a large number of natural constructs had very promising scaffold characteristics to begin with, and would often show good in vitro/in vivo results. Finally, an examination of the biochemistry and biomechanics of repair tissues in studies that reported positive outcomes showed that these attributes often approached target cartilage values. The paper concludes with an outline of current trends as well as future directions for the field. STATEMENT OF SIGNIFICANCE: This review offers an exclusive focus on natural scaffold materials for cartilage repair and regeneration and provides a quantitative and qualitative analysis of their performance under a variety of in vitro and in vivo conditions. Readers can learn about environments where natural scaffolds have had the most success and tailor strategies to optimize their own work. Furthermore, given how the glycosaminoglycan (GAG) to hydroxyproline (HYP) ratio and moduli are fundamental attributes of hyaline cartilage, this paper adds to the body of knowledge by exploring how these characteristics reflect in preclinical outcomes. Such perspectives can greatly aid researchers better utilize natural materials for Cartilage Tissue Engineering (CTE).


Cartilage, Articular , Tissue Scaffolds , Tissue Scaffolds/chemistry , Chondrocytes , Tissue Engineering/methods , Regeneration
6.
J Biomech Eng ; 145(7)2023 07 01.
Article En | MEDLINE | ID: mdl-36752723

The cartilage endplates (CEPs) on the superior and inferior surfaces of the intervertebral disk (IVD), are the primary nutrient transport pathways between the disk and the vertebral body. Passive diffusion is responsible for transporting small nutrient and metabolite molecules through the avascular CEPs. The baseline solute diffusivities in healthy CEPs have been previously studied, however alterations in CEP diffusion associated with IVD degeneration remain unclear. This study aimed to quantitatively compare the solute diffusion in healthy and degenerated human CEPs using a fluorescence recovery after photobleaching (FRAP) approach. Seven healthy CEPs and 22 degenerated CEPs were collected from five fresh-frozen human cadaveric spines and 17 patients undergoing spine fusion surgery, respectively. The sodium fluorescein diffusivities in CEP radial and vertical directions were measured using the FRAP method. The CEP calcification level was evaluated by measuring the average X-ray attenuation. No difference was found in solute diffusivities between radial and axial directions in healthy and degenerated CEPs. Compared to healthy CEPs, the average solute diffusivity was 44% lower in degenerated CEPs (Healthy: 29.07 µm2/s (CI: 23.96-33.62 µm2/s); degenerated: 16.32 µm2/s (CI: 13.84-18.84 µm2/s), p < 0.001). The average solute diffusivity had an inverse relationship with the degree of CEP calcification as determined by the normalized X-ray attenuation values (ß = -22.19, R2 = 0.633; p < 0.001). This study suggests that solute diffusion through the disk and vertebral body interface is significantly hindered by CEP calcification, providing clues to help further understand the mechanism of IVD degeneration.


Calcinosis , Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Cartilage/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Biological Transport , Diffusion
7.
Arthrosc Tech ; 11(11): e2113-e2118, 2022 Nov.
Article En | MEDLINE | ID: mdl-36457381

Rotator cuff repair failure rates continue to be a challenging problem. Various methods of biological and structural augmentation of the rotator cuff have been explored to improve tendon healing after repair. We describe a technique in which biceps tendon autograft is harvested after tenodesis. The biceps tendon is then compressed into a patch that is placed over the repaired rotator cuff tendon. Repurposing the portion of the tendon that is otherwise discarded offers several advantages over other augmentations that have been used, including the biological potential of live autograft tenocytes in the patch, lower cost, and no donor-site morbidity.

8.
Cartilage ; 13(4): 184-199, 2022 12.
Article En | MEDLINE | ID: mdl-36398763

OBJECTIVE: The use of perinatal-derived tissues and mesenchymal stromal cells (MSCs) as alternative treatment options to corticosteroid and hyaluronic acid injections has been gaining popularity. However, their ability to attenuate osteoarthritic (OA) symptoms while also slowing the progression of the disease remains controversial. Thus, the objective of this article is to summarize the results from both preclinical and clinical studies evaluating the efficacy of perinatal-derived tissue allografts and MSCs for the treatment of OA. DESIGN: A comprehensive literature search was conducted on databases including Pubmed, ScienceDirect, and Google Scholar beginning in March 2020 for both preclinical and clinical studies evaluating perinatal-derived tissues and MSCs in OA. Eighteen studies met the inclusion criteria and were used for this review. RESULTS: Both animal models and early human clinical trials demonstrated that perinatal tissues could reduce joint inflammation and pain as well as improve range of motion and function in OA. Perinatal tissue-derived MSCs in animal studies have shown the potential to support chondrocyte proliferation while also decreasing inflammatory gene and protein expression. Limited clinical results suggest perinatal tissue-derived MSC sources may also be a viable alternative or adjunct to hyaluronic acid in reducing pain and symptoms in an arthritic joint. CONCLUSIONS: Perinatal tissue-derived allografts and MSCs have promise as potential therapeutics for mitigating OA progression. However, further research is warranted to fully define the therapeutic mechanism(s) of action and safety of these biological therapies.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis, Knee , Animals , Humans , Mesenchymal Stem Cell Transplantation/methods , Hyaluronic Acid/therapeutic use , Osteoarthritis, Knee/metabolism , Mesenchymal Stem Cells/metabolism , Pain
9.
Am J Sports Med ; 50(14): 3963-3973, 2022 12.
Article En | MEDLINE | ID: mdl-36300544

BACKGROUND: Clinical trials are currently underway to investigate the efficacy of intra-articular administration of mesenchymal stromal cells (MSCs) to mitigate osteoarthritis (OA) progression in the knee. Although multiple MSC sources exist, studies have yet to determine whether differences in therapeutic efficacy exist between them. PURPOSE: To compare the ability of intra-articularly injected adipose-derived MSCs (AD-MSCs) and amnion-derived MSCs (AM-MSCs) to mitigate the progression of knee OA in a small animal model of spontaneous OA, as well as to compare the therapeutic potential of MSCs in hyaluronic acid (HA) and in HA only with saline (OA) controls. STUDY DESIGN: Controlled laboratory study. METHODS: Injections of AD-MSCs or AM-MSCs suspended in HA or HA only were performed in the rear stifle joints of 3-month-old Dunkin Hartley guinea pigs (DHGPs). Repeat injections occurred at 2 and 4 months after the initial injection in each animal. Contralateral limbs received saline injections and served as untreated controls. Subsequently, joints were analyzed for osteoarthritic changes of the cartilage and subchondral bone via histologic and biochemical analyses. To evaluate MSC retention time in the joint space, DHGPs received a single intra-articular injection of fluorescently labeled AD-MSCs or AM-MSCs, and the fluorescence intensity was longitudinally tracked via an in vivo imaging system. RESULTS: No statistically significant differences in outcomes were found when comparing the ability of AD-MSCs and AM-MSCs to mitigate OA. However, the injection of AD-MSCs, AM-MSCs, and HA-only treatments more effectively mitigated cartilage damage compared with that of saline controls by demonstrating higher amounts of cartilage glycosaminoglycan content and improved histological proteoglycan scoring while reducing the percentage of osteophytes present. CONCLUSION: Intra-articular injection of AD-MSCs, AM-MSCs, or HA only was able to similarly mitigate the progression of cartilage damage and reduce the percentage of osteophytes compared with that of saline controls in the DHGP. However, this study was unable to establish the superiority of AD-MSCs versus AM-MSCs as a treatment to mitigate spontaneous OA. CLINICAL RELEVANCE: MSCs demonstrate the ability to mitigate the progression of knee OA and thus may be used in a prophylactic approach to delay the need for end-stage treatment strategies.


Mesenchymal Stem Cells , Humans , Guinea Pigs , Animals , Infant
10.
Arthroscopy ; 38(1): 38-48, 2022 01.
Article En | MEDLINE | ID: mdl-34126215

PURPOSE: We create a viable, mechanically expanded autograft long head biceps tendon (LHBT) scaffold for biologically augmenting the repair of torn rotator cuffs. METHODS: The proximal aspect of the tenotomized LHBTs was harvested from patients during rotator cuff repair surgery and was mechanically formed into porous scaffolds using a surgical graft expander. LHBT scaffolds were evaluated for change in area, tensile properties, and tenocyte viability before and after expansion. The ability of endogenous tenocytes derived from the LHBT scaffold to promote tenogenic differentiation of human adipose-derived mesenchymal stromal cells (ADMSCs) was also determined. RESULTS: Autograft LHBTs were successfully expanded using a modified surgical graft expander to create a porous scaffold containing viable resident tenoctyes from patients undergoing rotator cuff repair. LHBT scaffolds had significantly increased area (length: 24.91 mm [13.91, 35.90] × width: 22.69 mm [1.87, 34.50]; P = .011) compared with the native LHBT tendon (length: 27.16 mm [2.70, 33.62] × width: 6.68 mm [5.62, 7.74]). The structural properties of the autograft were altered, including the ultimate tensile strength (LHBT scaffold: .56 MPa [.06, 1.06] vs. native LHBT: 2.35 MPa [1.36, 3.33]; P = .002) and tensile modulus (LHBT scaffold: 4.72 MPa [-.80, 1.24] versus native LHBT: 37.17 MPa [24.56, 49.78]; P = .001). There was also a reduction in resident tenocyte percent viability (LHBT scaffold: 38.52% [17.94, 59.09] vs. native LHBT: 68.87% [63.67, 74.37]; P =.004). Tenocytes derived from the LHBT scaffold produced soluble signals that initiated ADMSC differentiation into an immature tenocyte-like phenotype, as indicated by an 8.7× increase in scleraxis (P = .040) and a 3.6× increase in collagen type III mRNA expression (P = .050) compared with undifferentiated ADMSC controls. CONCLUSIONS: The ability to produce a viable autologous scaffold from the proximal biceps tendon having dimensions, porosity, mechanical characteristics, native ECM components, and viable tenocytes that produce bioactive signals conducive to supporting the biologic augmentation of rotator cuff repair surgery has been demonstrated. CLINICAL RELEVANCE: This biologically active construct may help to improve the quality of healing and regeneration at the repair site of rotator cuff tears, especially those at high risk for retear.


Rotator Cuff Injuries , Rotator Cuff , Arthroscopy , Autografts , Humans , Rotator Cuff/surgery , Tendons
11.
J Biomed Mater Res B Appl Biomater ; 110(5): 1056-1068, 2022 05.
Article En | MEDLINE | ID: mdl-34843173

The angle-ply multilaminate structure of the annulus fibrosus is not reestablished following discectomy which leads to reherniation of the intervertebral disc (IVD). Biomimetic scaffolds developed to repair these defects should be evaluated for their ability to support tissue regeneration by endogenous and exogenous cells. Herein a collagen-based, angle-ply multilaminate patch designed to repair the outer annulus fibrosus was assessed for its ability to support mesenchymal stromal and annulus fibrosus cell viability, elongation, alignment, extracellular matrix gene expression, and scaffold remodeling. Results demonstrated that the cells remained viable, elongated, and aligned along the collagen fiber preferred direction of the scaffold, upregulated genes associated with annulus fibrosus matrix and produced collagen on the scaffold yielding biaxial mechanical properties that resembled native annulus fibrosus tissue. In conclusion, these scaffolds have demonstrated their potential to promote a living repair of defects in the annulus fibrosus and thus may be used to prevent recurrent IVD herniations.


Annulus Fibrosus , Intervertebral Disc , Cell Survival , Collagen , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wound Healing
12.
Eng Regen ; 3(4): 374-386, 2022 Dec.
Article En | MEDLINE | ID: mdl-38362305

Mitral valve (MV) tissue engineering is still in its early stage, and one major challenge in MV tissue engineering is to identify appropriate scaffold materials. With the potential of acellular MV scaffolds being demonstrated recently, it is important to have a full understanding of the biomechanics of the native MV components and their acellular scaffolds. In this study, we have successfully characterized the structural and mechanical properties of porcine MV components, including anterior leaflet (AL), posterior leaflet (PL), strut chordae, and basal chordae, before and after decellularization. Quantitative DNA assay showed more than 90% reduction in DNA content, and Griffonia simplicifolia (GS) lectin immunohistochemistry confirmed the complete lack of porcine α-Gal antigen in the acellular MV components. In the acellular AL and PL, the atrialis, spongiosa, and fibrosa trilayered structure, along with its ECM constitutes, i.e., collagen fibers, elastin fibers, and portion of GAGs, were preserved. Nevertheless, the ECM of both AL and PL experienced a certain degree of disruption, exhibiting a less dense, porous ECM morphology. The overall anatomical morphology of the strut and basal chordae were also maintained after decellularization, with longitudinal morphology experiencing minimum disruption, but the cross-sectional morphology exhibiting evenly-distributed porous structure. In the acellular AL and PL, the nonlinear anisotropic biaxial mechanical behavior was overall preserved; however, uniaxial tensile tests showed that the removal of cellular content and the disruption of structural ECM did result in small decreases in maximum tensile modulus, tissue extensibility, failure stress, and failure strain for both MV leaflets and chordae.

13.
Biomed Opt Express ; 12(5): 2759-2772, 2021 May 01.
Article En | MEDLINE | ID: mdl-34123502

Chondrocyte viability is a crucial factor in evaluating cartilage health. Most cell viability assays rely on dyes and are not applicable for in vivo or longitudinal studies. We previously demonstrated that two-photon excited autofluorescence and second harmonic generation microscopy provided high-resolution images of cells and collagen structure; those images allowed us to distinguish live from dead chondrocytes by visual assessment or by the normalized autofluorescence ratio. However, both methods require human involvement and have low throughputs. Methods for automated cell-based image processing can improve throughput. Conventional image processing algorithms do not perform well on autofluorescence images acquired by nonlinear microscopes due to low image contrast. In this study, we compared conventional, machine learning, and deep learning methods in chondrocyte segmentation and classification. We demonstrated that deep learning significantly improved the outcome of the chondrocyte segmentation and classification. With appropriate training, the deep learning method can achieve 90% accuracy in chondrocyte viability measurement. The significance of this work is that automated imaging analysis is possible and should not become a major hurdle for the use of nonlinear optical imaging methods in biological or clinical studies.

14.
Vet Radiol Ultrasound ; 62(5): 568-572, 2021 Sep.
Article En | MEDLINE | ID: mdl-34002920

Sheep are established models for intervertebral disc degeneration (IVDD) translational research. Objectives of this retrospective, secondary analysis, observational study were to evaluate reproducibility of two magnetic resonance imaging (MRI) measures of IVDD in sheep using open-source image analysis software. Sagittal planar, T2-weighted, lumbar MRI scans from a previous, prospective study were evaluated (4 sheep @ 3 treatment periods/sheep @ 7 lumbar discs /treatment period = 84 discs). A standardized protocol was developed for measuring MRI index (nucleus pulposus signal intensity × nucleus pulposus sagittal area), and nucleus pulposus signal intensity standard deviation (NPSISD). Scans were randomized and four observers with varying experience levels applied the protocol to independently perform triplicate measures. Mean coefficient of variation values for both the MRI index and NPSISD were within an acceptable range (< 10). Mean values for the three readers with at least 2 months of image analysis experience did not differ (P > .05).


Intervertebral Disc Degeneration , Intervertebral Disc , Sheep Diseases , Animals , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/veterinary , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging/veterinary , Prospective Studies , Reproducibility of Results , Retrospective Studies , Sheep , Sheep Diseases/diagnostic imaging , Software
15.
Aerosp Med Hum Perform ; 92(5): 342-352, 2021 May 01.
Article En | MEDLINE | ID: mdl-33875067

INTRODUCTION: The effects of spaceflight on the intervertebral disc (IVD) have not been thoroughly studied, despite the knowledge that spaceflight increases the risk of herniation of IVDs in astronauts upon return to Earth. However, as long duration missions become more common, fully characterizing the mechanisms behind space-induced IVD degeneration becomes increasingly imperative for mission success. This review therefore surveys current literature to outline the results of human, animal, and cell-level studies investigating the effect of microgravity and radiation exposure on IVD health. Overall, recurring study findings include increases in IVD height in microgravity conditions, upregulation of catabolic proteases leading to a weakening extracellular matrix (ECM), and both nucleus pulposus (NP) swelling and loss of annulus fibrosus (AF) fiber alignment which are hypothesized to contribute to the increased risk of herniation when reloading is experienced. However, the limitations of current studies are also discussed. For example, human studies do not allow for invasive measures of the underpinning biochemical mechanisms, correlating animal model results to the human condition may be difficult, and cellular studies lack incorporation of ECM and other complexities that mimic the native IVD microarchitecture and environment. Moving forward, the use of three-dimensional organoid culture models that incorporate IVD-specific human cells, ECM, and signals as well as the development of cell- and ECM-level computational models may further improve our understanding of the impacts that spaceflight has on astronaut IVD health.Smith K, Mercuri J. Microgravity and radiation effects on astronaut intervertebral disc health. Aerosp Med Hum Perform. 2021; 92(5):342352.


Intervertebral Disc Degeneration , Intervertebral Disc , Space Flight , Weightlessness , Animals , Astronauts , Humans , Intervertebral Disc Degeneration/etiology , Weightlessness/adverse effects
16.
J Biomed Mater Res A ; 109(4): 551-561, 2021 04.
Article En | MEDLINE | ID: mdl-32946189

Synovial fluid is dynamic in vivo with biological components changing in ratio and size depending on the health of the joint space, making it difficult to model in vitro. Previous efforts to develop synthetic synovial fluid have typically focused on single organic-tribological interactions with implant surfaces, thus ignoring interplay between multiple solution components. Using a Taguchi orthogonal array, we were able to isolate the individual effects of five independent synovial fluid composition variables: ratios of (1) hyaluronic acid to phospholipids (HA:PL) and (2) albumin to globulin (A:G), and concentrations of (3) hydrogen peroxide (H2 O2 ), (4) cobalt (Co2+ ) and (5) chromium (Cr3+ ) ions on macrophage viability and reduced glutathione production, local solution pH and the comprehensive CoCrMo alloy electrochemical response. While no single synovial fluid variable significantly affected the collective response, HA:PL ratio resulted in the largest impact factor (Δ) on 12 of the 13 measured responses with significant effects (p < .05) on the average macrophage survival rate and electrochemical capacitive state of the CoCrMo surface. Cluster analysis separated significant responses from all trials into three groups, corresponding to healthy, mild, or severely inflamed fluids, respectively; with the healthy synovial fluid composition having mid-range HA:PL ratios with no Co2+ ions, and the severely inflamed fluids consisting of low and high HA:PL ratios with H2 O2 and Co2+ ions. By utilizing the Taguchi approach in combination with cluster analysis, we were able to advance our knowledge of complex multivariate synthetic synovial fluids influence on macrophage and electrochemical behavior at the cell-solution-metal interface.


Synovial Fluid/chemistry , Animals , Cell Culture Techniques , Cell Survival , Corrosion , Glutathione/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Phospholipids/chemistry , Phospholipids/metabolism , RAW 264.7 Cells , Synovial Fluid/metabolism
17.
J Biomed Mater Res A ; 109(7): 1232-1246, 2021 07.
Article En | MEDLINE | ID: mdl-33040470

Intervertebral disc (IVD) degeneration (IVDD) leads to structural and functional changes. Biomaterials for restoring IVD function and promoting regeneration are currently being investigated; however, such approaches require validation using animal models that recapitulate clinical, biochemical, and biomechanical hallmarks of the human pathology. Herein, we comprehensively characterized a sheep model of chondroitinase-ABC (ChABC) induced IVDD. Briefly, ChABC (1 U) was injected into the L1/2 , L2/3 , and L3/4 IVDs. Degeneration was assessed via longitudinal magnetic resonance (MR) and radiographic imaging. Additionally, kinematic, biochemical, and histological analyses were performed on explanted functional spinal units (FSUs). At 17-weeks, ChABC treated IVDs demonstrated significant reductions in MR index (p = 0.030) and disc height (p = 0.009) compared with pre-operative values. Additionally, ChABC treated IVDs exhibited significantly increased creep displacement (p = 0.004) and axial range of motion (p = 0.007) concomitant with significant decreases in tensile (p = 0.034) and torsional (p = 0.021) stiffnesses and long-term viscoelastic properties (p = 0.016). ChABC treated IVDs also exhibited a significant decrease in NP glycosaminoglycan: hydroxyproline ratio (p = 0.002) and changes in microarchitecture, particularly in the NP and endplates, compared with uninjured IVDs. Taken together, this study demonstrated that intradiscal injection of ChABC induces significant degeneration in sheep lumbar IVDs and the potential for using this model in evaluating biomaterials for IVD repair, regeneration, or fusion.


Chondroitin ABC Lyase/metabolism , Disease Models, Animal , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Sheep , Animals , Biocompatible Materials/therapeutic use , Biomechanical Phenomena , Chondroitin ABC Lyase/administration & dosage , Female , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/enzymology , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/enzymology , Intervertebral Disc Degeneration/therapy , Magnetic Resonance Imaging , Male , Materials Testing , Sheep/physiology
19.
J Orthop Res ; 37(11): 2445-2456, 2019 11.
Article En | MEDLINE | ID: mdl-31287173

Intervertebral disc degeneration (IVDD) is a progressive condition marked by tissue destruction and inflammation. The therapeutic effector functions of mesenchymal stem cells (MSCs) makes them an attractive therapy for patients with IVDD. While several sources of MSCs exist, the optimal choice for use in the inflamed IVD remains a significant question. Adipose (AD)- and amnion (AM)-derived MSCs have several advantages compared with other sources, however, no study has directly compared the impact of IVDD inflammation on their effector functions. Human MSCs were cultured in media with or without supplementation of interleukin-1ß (IL-1ß) and tumor necrosis factor-α at concentrations reportedly produced by IVDD cells. MSC proliferation and production of pro- and anti-inflammatory cytokines were quantified following 24 and 48 h of culture. Additionally, the osteogenic and chondrogenic potential of AD- and AM-MSCs was characterized via histology and biochemical analysis following 28 days of culture. In inflammatory culture, AM-MSCs produced significantly more anti-inflammatory IL-10 (14.47 ± 2.39 pg/ml; p = 0.004) and larger chondrogenic pellets (5.67 ± 0.26 mm2 ; p = 0.04) with greater percent area staining positively for glycosaminoglycan (82.03 ± 3.26%; p < 0.001) compared with AD-MSCs (0.00 ± 0.00 pg/ml; 2.76 ± 0.18 mm2 ; 34.75 ± 2.49%; respectively). Conversely, AD-MSCs proliferated more resulting in higher cell numbers (221,000 ± 8,021 cells; p = 0.048) and produced higher concentrations of pro-inflammatory cytokines prostaglandin E2 (1,118.30 ± 115.56 pg/ml; p = 0.030) and IL-1ß (185.40 ± 7.63 pg/ml; p = 0.010) compared with AM-MSCs (109,667 ± 5,696 cells; 1,291.40 ± 78.47 pg/ml; 144.10 ± 4.57 pg/ml; respectively). AD-MSCs produced more mineralized extracellular matrix (3.34 ± 0.05 relative absorbance units [RAU]; p < 0.001) compared with AM-MSCs (1.08 ± 0.06 RAU). Under identical inflammatory conditions, a different effector response was observed with AM-MSCs producing more anti-inflammatories and demonstrating enhanced chondrogenesis compared with AD-MSCs, which produced more pro-inflammatory cytokines and demonstrated enhanced osteogenesis. These findings may begin to help inform researchers which MSC source may be optimal for IVD regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2445-2456, 2019.


Adipose Tissue/cytology , Amnion/cytology , Inflammation/physiopathology , Intervertebral Disc Degeneration/therapy , Mesenchymal Stem Cells/physiology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Extracellular Matrix/metabolism , Female , Humans , Inflammation/metabolism , Pregnancy
20.
J Mech Behav Biomed Mater ; 95: 41-52, 2019 07.
Article En | MEDLINE | ID: mdl-30953808

Focal defects in the annulus fibrosus (AF) of the intervertebral disc (IVD) arising from herniation have detrimental impacts on the IVD's mechanical function. Thus, biomimetic-based repair strategies must restore the mechanical integrity of the AF to help support and restore native spinal loading and motion. Accordingly, an annulus fibrosus repair patch (AFRP); a collagen-based multi-laminate scaffold with an angle-ply architecture has been previously developed, which demonstrates similar mechanical properties to native outer AF (oAF). To further enhance the mimetic nature of the AFRP, interlamellar (ILM) glycosaminoglycan (GAG) was incorporated into the scaffolds. The ability of the scaffolds to withstand simulated impact loading and resist herniation of native IVD tissue while contributing to the restoration of spinal kinematics were assessed separately. The results demonstrate that incorporation of a GAG-based ILM significantly increased (p < 0.001) the impact strength of the AFRP (2.57 ±â€¯0.04 MPa) compared to scaffolds without (1.51 ±â€¯0.13 MPa). Additionally, repair of injured functional spinal units (FSUs) with an AFRP in combination with sequestering native NP tissue and a full-thickness AF tissue plug enabled the restoration of creep displacement (p = 0.134), short-term viscous damping coefficient (p = 0.538), the long-term viscous (p = 0.058) and elastic (p = 0.751) damping coefficients, axial neutral zone (p = 0.908), and axial range of motion (p = 0.476) to an intact state. Lastly, the AFRP scaffolds were able to prevent native IVD tissue herniation upon application of supraphysiologic loads (5.28 ±â€¯1.24 MPa). Together, these results suggest that the AFRP has the strength to sequester native NP and AF tissue and/or implants, and thus, can be used in a composite repair strategy for IVDs with focal annular defects thereby assisting in the restoration of spinal kinematics.


Annulus Fibrosus/drug effects , Biocompatible Materials/pharmacology , Intervertebral Disc Displacement/prevention & control , Mechanical Phenomena/drug effects , Tissue Scaffolds/chemistry , Animals , Biomechanical Phenomena/drug effects , Cattle
...