Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Biofilm ; 7: 100185, 2024 Jun.
Article En | MEDLINE | ID: mdl-38444517

The ability of bacteria to adhere to and form biofilms on food contact surfaces poses serious challenges, as these may lead to the cross-contamination of food products. Biomimetic topographic surface modifications have been explored to enhance the antifouling performance of materials. In this study, the topography of two plant leaves, Brassica oleracea var. botrytis (cauliflower, CF) and Brassica oleracea capitate (white cabbage, WC), was replicated through wax moulding, and their antibiofilm potential was tested against single- and dual-species biofilms of Escherichia coli and Pseudomonas putida. Biomimetic surfaces exhibited higher roughness values (SaWC = 4.0 ± 1.0 µm and SaCF = 3.3 ± 1.0 µm) than the flat control (SaF = 0.6 ± 0.2 µm), whilst the CF surface demonstrated a lower interfacial free energy (ΔGiwi) than the WC surface (-100.08 mJ m-2 and -71.98 mJ m-2, respectively). The CF and WC surfaces had similar antibiofilm effects against single-species biofilms, achieving cell reductions of approximately 50% and 60% for E. coli and P. putida, respectively, compared to the control. Additionally, the biomimetic surfaces led to reductions of up to 60% in biovolume, 45% in thickness, and 60% in the surface coverage of single-species biofilms. For dual-species biofilms, only the E. coli strain growing on the WC surface exhibited a significant decrease in the cell count. However, confocal microscopy analysis revealed a 60% reduction in the total biovolume and surface coverage of mixed biofilms developed on both biomimetic surfaces. Furthermore, dual-species biofilms were mainly composed of P. putida, which reduced E. coli growth. Altogether, these results demonstrate that the surface properties of CF and WC biomimetic surfaces have the potential for reducing biofilm formation.

2.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Article En | MEDLINE | ID: mdl-37998822

Chemically modified carbon nanotubes are recognized as effective materials for tackling bacterial infections. In this study, pristine multi-walled carbon nanotubes (p-MWCNTs) were functionalized with nitric acid (f-MWCNTs), followed by thermal treatment at 600 °C, and incorporated into a poly(dimethylsiloxane) (PDMS) matrix. The materials' textural properties were evaluated, and the roughness and morphology of MWCNT/PDMS composites were assessed using optical profilometry and scanning electron microscopy, respectively. The antibiofilm activity of MWCNT/PDMS surfaces was determined by quantifying culturable Escherichia coli and Staphylococcus aureus after 24 h of biofilm formation. Additionally, the antibacterial mechanisms of MWCNT materials were identified by flow cytometry, and the cytotoxicity of MWCNT/PDMS composites was tested against human kidney (HK-2) cells. The results revealed that the antimicrobial activity of MWCNTs incorporated into a PDMS matrix can be efficiently tailored through nitric acid functionalization, and it can be increased by up to 49% in the absence of surface carboxylic groups in f-MWCNT samples heated at 600 °C and the presence of redox activity of carbonyl groups. MWCNT materials changed the membrane permeability of both Gram-negative and Gram-positive bacteria, while they only induced the production of ROS in Gram-positive bacteria. Furthermore, the synthesized composites did not impact HK-2 cell viability, confirming the biocompatibility of MWCNT composites.

3.
Biomolecules ; 13(11)2023 10 24.
Article En | MEDLINE | ID: mdl-38002253

The application of graphene-based materials in medicine has led to significant technological breakthroughs. The remarkable properties of these carbon materials and their potential for functionalization with various molecules and compounds make them highly attractive for numerous medical applications. To enhance their functionality and applicability, extensive research has been conducted on surface modification of graphene (GN) and its derivatives, including modifications with antimicrobials, metals, polymers, and natural compounds. This review aims to discuss recent and relevant studies related to advancements in the formulation of graphene composites, addressing their antimicrobial and/or antibiofilm properties and evaluating their biocompatibility, with a primary focus on their biomedical applications. It was concluded that GN surface modification, particularly with compounds intrinsically active against bacteria (e.g., antimicrobial peptides, silver and copper nanomaterials, and chitosan), has resulted in biomaterials with improved antimicrobial performance. Furthermore, the association of GN materials with non-natural polymers provides composites with increased biocompatibility when interfaced with human tissues, although with slightly lower antimicrobial efficacy. However, it is crucial to highlight that while modified GN materials hold huge potential, their widespread use in the medical field is still undergoing research and development. Comprehensive studies on safety, long-term effects, and stability are essential before their adoption in real-world medical scenarios.


Anti-Infective Agents , Graphite , Humans , Graphite/pharmacology , Graphite/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Silver/pharmacology , Silver/chemistry , Polymers/chemistry
4.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37764632

Graphene has been broadly studied, particularly for the fabrication of biomedical devices, owing to its physicochemical and antimicrobial properties. In this study, the antibiofilm efficacy of graphene nanoplatelet (GNP)-based composites as coatings for urinary catheters (UCs) was investigated. GNPs were functionalized with nitrogen (N-GNP) and incorporated into a polydimethylsiloxane (PDMS) matrix. The resulting materials were characterized, and the N-GNP/PDMS composite was evaluated against single- and multi-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Both biofilm cell composition and structure were analyzed. Furthermore, the antibacterial mechanisms of action of N-GNP were explored. The N-GNP/PDMS composite showed increased hydrophobicity and roughness compared to PDMS. In single-species biofilms, this composite significantly reduced the number of S. aureus, P. aeruginosa, and K. pneumoniae cells (by 64, 41, and 29%, respectively), and decreased S. aureus biofilm culturability (by 50%). In tri-species biofilms, a 41% reduction in total cells was observed. These results are aligned with the outcomes of the biofilm structure analysis. Moreover, N-GNP caused changes in membrane permeability and triggered reactive oxygen species (ROS) synthesis in S. aureus, whereas in Gram-negative bacteria, it only induced changes in cell metabolism. Overall, the N-GNP/PDMS composite inhibited biofilm development, showing the potential of these carbon materials as coatings for UCs.

5.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Article En | MEDLINE | ID: mdl-37107116

Microorganisms tend to adhere to food contact surfaces and form biofilms, which serve as reservoirs for bacteria that can contaminate food. As part of a biofilm, bacteria are protected from the stressful conditions found during food processing and become tolerant to antimicrobials, including traditional chemical sanitisers and disinfectants. Several studies in the food industry have shown that probiotics can prevent attachment and the consequent biofilm formation by spoilage and pathogenic microorganisms. This review discusses the most recent and relevant studies on the effects of probiotics and their metabolites on pre-established biofilms in the food industry. It shows that the use of probiotics is a promising approach to disrupt biofilms formed by a large spectrum of foodborne microorganisms, with Lactiplantibacillus and Lacticaseibacillus being the most tested genera, both in the form of probiotic cells and as sources of cell-free supernatant. The standardisation of anti-biofilm assays for evaluating the potential of probiotics in biofilm control is of extreme importance, enabling more reliable, comparable, and predictable results, thus promoting significant advances in this field.

6.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36770342

Due to its several economic and ecological consequences, biofouling is a widely recognized concern in the marine sector. The search for non-biocide-release antifouling coatings has been on the rise, with carbon-nanocoated surfaces showing promising activity. This work aimed to study the impact of pristine graphene nanoplatelets (GNP) on biofilm development through the representative marine bacteria Cobetia marina and to investigate the antibacterial mechanisms of action of this material. For this purpose, a flow cytometric analysis was performed and a GNP/polydimethylsiloxane (PDMS) surface containing 5 wt% GNP (G5/PDMS) was produced, characterized, and assessed regarding its biofilm mitigation potential over 42 days in controlled hydrodynamic conditions that mimic marine environments. Flow cytometry revealed membrane damage, greater metabolic activity, and endogenous reactive oxygen species (ROS) production by C. marina when exposed to GNP 5% (w/v) for 24 h. In addition, C. marina biofilms formed on G5/PDMS showed consistently lower cell count and thickness (up to 43% reductions) than PDMS. Biofilm architecture analysis indicated that mature biofilms developed on the graphene-based surface had fewer empty spaces (34% reduction) and reduced biovolume (25% reduction) compared to PDMS. Overall, the GNP-based surface inhibited C. marina biofilm development, showing promising potential as a marine antifouling coating.

7.
Molecules ; 28(3)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36770658

The demand for bio-based and safer composite materials is increasing due to the growth of the industry, human population, and environmental concerns. In this framework, sustainable and safer cork-polymer composites (CPC), based on green low-density polyethylene (LDPE) were developed using melt-based technologies. Chitosan and polyethylene-graft-maleic anhydride (PE-g-MA) were employed to enhance the CPC's properties. The morphology, wettability, mechanical, thermal, and antibacterial properties of the CPC against Pseudomonas putida (P. putida) and Staphylococcus aureus (S. aureus) were examined. The CPC showed improved stiffness when compared with that of the LDPE matrix, preferably when combined with chitosan and PE-g-MA (5 wt. %), reinforcing the stiffness (58.8%) and the strength (66.7%). Chitosan also increased the composite stiffness and strength, as well as reduced the surface hydrophilicity. The CPCs' antibacterial activity revealed that cork significantly reduces the biofilm on the polymer matrix. The highest biofilm reduction was found with CPC containing cork and 5 wt. % chitosan for both P. putida (54% reduction) and S. aureus (36% reduction), confirming their potential to extend the lifespan of products for packaging and healthcare, among other applications. This work leads to the understanding of the factors that influence biofilm formation in cork composites and provides a strategy to reinforce their behavior using chitosan.


Biofouling , Chitosan , Humans , Chitosan/pharmacology , Polyethylene , Biofouling/prevention & control , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Polymers
8.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Article En | MEDLINE | ID: mdl-36633537

Cyanobacteria are new sources of value-added compounds but also ubiquitous and harmful microfoulers on marine biofouling. In this work, the isolation and identification of two cyanobacterial strains isolated from Cape Verde and Morocco, as well as their biofilm-forming ability on glass and Perspex under controlled hydrodynamic conditions, were performed. Phylogenetic analysis revealed that cyanobacterial strains isolated belong to Leptothoe and Jaaginema genera (Leptothoe sp. LEGE 181153 and Jaaginema sp. LEGE 191154). From quantitative and qualitative data of wet weight, chlorophyll a content and biofilm thickness obtained by optical coherence tomography, no significant differences were found in biofilms developed by the same cyanobacterial strain on different surfaces (glass and Perspex). However, the biofilm-forming potential of Leptothoe sp. LEGE 181153 proved to be higher compared with Jaaginema sp. LEGE 191154, particularly at the maturation stage of biofilm development. Three-dimensional biofilm images obtained from confocal laser scanning microscopy showed different patterns between both cyanobacterial strains and also among the two surfaces. Because standard methodologies to evaluate cyanobacterial biofilm formation, as well as two different optical imaging techniques, were used, this work also highlights the possibility of integrating different techniques to evaluate a complex phenomenon like cyanobacterial biofilm development.


Biofouling , Cyanobacteria , Chlorophyll A , Cabo Verde , Morocco , Phylogeny , Polymethyl Methacrylate , Cyanobacteria/genetics , Biofilms
9.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article En | MEDLINE | ID: mdl-36498973

Marine biofouling is a natural process often associated with biofilm formation on submerged surfaces, creating a massive economic and ecological burden. Although several antifouling paints have been used to prevent biofouling, growing ecological concerns emphasize the need to develop new and environmentally friendly antifouling approaches such as bio-based coatings. Chitosan (CS) is a natural polymer that has been widely used due to its outstanding biological properties, including non-toxicity and antimicrobial activity. This work aims to produce and characterize poly (lactic acid) (PLA)-CS surfaces with CS of different molecular weight (Mw) at different concentrations for application in marine paints. Loligo opalescens pens, a waste from the fishery industry, were used as a CS source. The antimicrobial activity of the CS and CS-functionalized surfaces was assessed against Cobetia marina, a model proteobacterium for marine biofouling. Results demonstrate that CS targets the bacterial cell membrane, and PLA-CS surfaces were able to reduce the number of culturable cells up to 68% compared to control, with this activity dependent on CS Mw. The antifouling performance was corroborated by Optical Coherence Tomography since PLA-CS surfaces reduced the biofilm thickness by up to 36%, as well as the percentage and size of biofilm empty spaces. Overall, CS coatings showed to be a promising approach to reducing biofouling in marine environments mimicked in this work, contributing to the valorization of fishing waste and encouraging further research on this topic.


Anti-Infective Agents , Biofouling , Chitosan , Chitosan/pharmacology , Biofouling/prevention & control , Biofilms , Paint
10.
NPJ Biofilms Microbiomes ; 8(1): 80, 2022 10 17.
Article En | MEDLINE | ID: mdl-36253388

Proteomic studies on cyanobacterial biofilms can be an effective approach to unravel metabolic pathways involved in biofilm formation and, consequently, obtain more efficient biofouling control strategies. Biofilm development by the filamentous cyanobacterium Toxifilum sp. LEGE 06021 was evaluated on different surfaces, glass and perspex, and at two significant shear rates for marine environments (4 s-1 and 40 s-1). Higher biofilm development was observed at 4 s-1. Overall, about 1877 proteins were identified, and differences in proteome were more noticeable between hydrodynamic conditions than those found between surfaces. Twenty Differentially Expressed Proteins (DEPs) were found between 4 s-1 vs. 40 s-1. On glass, some of these DEPs include phage tail proteins, a carotenoid protein, cyanophynase glutathione-dependent formaldehyde dehydrogenase, and the MoaD/ThiS family protein, while on perspex, DEPs include transketolase, dihydroxy-acid dehydratase, iron ABC transporter substrate-binding protein and protein NusG. This study contributes to developing a standardized protocol for proteomic analysis of filamentous cyanobacterial biofilms. This kind of proteomic analysis can also be useful for different research fields, given the broad spectrum of promising secondary metabolites and added-value compounds produced by cyanobacteria, as well as for the development of new antibiofilm strategies.


Cyanobacteria , Hydrodynamics , ATP-Binding Cassette Transporters , Biofilms , Carotenoids , Glutathione , Hydro-Lyases , Iron , Polymethyl Methacrylate , Proteome , Proteomics , Transketolase
11.
Polymers (Basel) ; 14(20)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36297988

The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications.

12.
Biology (Basel) ; 11(8)2022 Jul 27.
Article En | MEDLINE | ID: mdl-36009752

In recent years, abundant research has been performed on biofilms for the production of compounds with biotechnological and industrial relevance. The use of biofilm platforms has been seen as a compelling approach to producing fine and bulk chemicals such as organic acids, alcohols, and solvents. However, the production of recombinant proteins using this system is still scarce. Biofilm reactors are known to have higher biomass density, operational stability, and potential for long-term operation than suspended cell reactors. In addition, there is an increasing demand to harness industrial and agricultural wastes and biorefinery residues to improve process sustainability and reduce production costs. The synthesis of recombinant proteins and other high-value compounds is mainly achieved using suspended cultures of bacteria, yeasts, and fungi. This review discusses the use of biofilm reactors for the production of recombinant proteins and other added-value compounds using bacteria and fungi.

13.
Antibiotics (Basel) ; 11(8)2022 Aug 14.
Article En | MEDLINE | ID: mdl-36009971

Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis. In addition, the retrieved publications were subjected to a quality assessment process based on an adapted Methodological Index for Non-Randomized Studies (MINORS) scale. In general, this review demonstrated the promising antifouling performance of these carbon nanomaterials in marine environments. Further, results from the revised studies suggested that functionalized GP- and CNTs-based marine coatings exhibited improved antifouling performance compared to these materials in pristine forms. Thanks to their high self-cleaning and enhanced antimicrobial properties, as well as durability, these functionalized composites showed outstanding results in protecting submerged surfaces from the settlement of fouling organisms in marine settings. Overall, these findings can pave the way for the development of new carbon-engineered surfaces capable of preventing marine biofouling.

14.
Microorganisms ; 10(5)2022 Apr 29.
Article En | MEDLINE | ID: mdl-35630375

Hydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h-1 (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h-1 and 2-fold higher for 128 L h-1). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h-1. Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms.

15.
Biology (Basel) ; 11(3)2022 Mar 01.
Article En | MEDLINE | ID: mdl-35336761

Protein Engineering is a highly evolved field of engineering aimed at developing proteins for specific industrial, medical, and research applications. Here, we present a practical teaching course to demonstrate fundamental techniques used to express, purify and analyze a recombinant protein produced in Escherichia coli-the enhanced green fluorescent protein (eGFP). The methodologies used for eGFP production were introduced sequentially over six laboratory sessions and included (i) bacterial growth, (ii) sonication (for cell lysis), (iii) affinity chromatography and dialysis (for eGFP purification), (iv) bicinchoninic acid (BCA) and fluorometry assays for total protein and eGFP quantification, respectively, and (v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for qualitative analysis. All groups were able to isolate the eGFP from the cell lysate with purity levels up to 72%. Additionally, a mass balance analysis performed by the students showed that eGFP yields up to 46% were achieved at the end of the purification process following the adopted procedures. A sensitivity analysis was performed to pinpoint the most critical steps of the downstream processing.

16.
Nanomaterials (Basel) ; 12(3)2022 Jan 22.
Article En | MEDLINE | ID: mdl-35159699

The increasing incidence of implant-associated infections has prompted the development of effective strategies to prevent biofilm formation on these devices. In this work, pristine graphene nanoplatelet/polydimethylsiloxane (GNP/PDMS) surfaces containing different GNP loadings (1, 2, 3, 4, and 5 wt%) were produced and evaluated on their ability to mitigate biofilm development. After GNP loading optimization, the most promising surface was tested against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The antibiofilm activity of GNP/PDMS surfaces was determined by the quantification of total, viable, culturable, and viable but nonculturable (VBNC) cells, as well as by confocal laser scanning microscopy (CLSM). Results showed that 5 wt% GNP loading reduced the number of total (57%), viable (69%), culturable (55%), and VBNC cells (85%) of S. aureus biofilms compared to PDMS. A decrease of 25% in total cells and about 52% in viable, culturable, and VBNC cells was observed for P. aeruginosa biofilms. Dual-species biofilms demonstrated higher resistance to the antimicrobial activity of GNP surfaces, with lower biofilm cell reductions (of up to 29% when compared to single-species biofilms). Still, the effectiveness of these surfaces in suppressing single- and dual-species biofilm formation was confirmed by CLSM analysis, where a decrease in biofilm biovolume (83% for S. aureus biofilms and 42% for P. aeruginosa and dual-species biofilms) and thickness (on average 72%) was obtained. Overall, these results showed that pristine GNPs dispersed into the PDMS matrix were able to inhibit biofilm growth, being a starting point for the fabrication of novel surface coatings based on functionalized GNP/PDMS composites.

17.
iScience ; 24(12): 103480, 2021 Dec 17.
Article En | MEDLINE | ID: mdl-34927024

Despite the advancements in material science and surgical techniques, the incidence of implant-associated infections (IAIs) has increased significantly. IAIs are mainly caused by microbial adhesion and biofilm formation on implant surfaces. In this study, we aimed to evaluate and critically discuss the antimicrobial efficacy of chitosan-based coatings to prevent the occurrence of IAIs. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and forty studies were selected for qualitative analysis. Results indicated that chitosan (CS) association with enzymes and antimicrobial peptides improves its antimicrobial activity and extends its use in a broad range of physiological conditions. Likewise, CS association with polymers resulted in enhanced antimicrobial and anti-adhesive coatings with desirable properties, such as biocompatibility and durability, for implantable medical devices (IMDs). These findings can assist researchers in the design of new CS coatings for application in IMDs.

18.
Antibiotics (Basel) ; 10(12)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34943738

The low efficacy of conventional treatments and the interest in finding natural-based approaches to counteract biofilm development on urinary tract devices have promoted the research on probiotics. This work evaluated the ability of two probiotic strains, Lactobacillus plantarum and Lactobacillus rhamnosus, in displacing pre-formed biofilms of Escherichia coli and Staphylococcus aureus from medical-grade silicone. Single-species biofilms of 24 h were placed in contact with each probiotic suspension for 6 h and 24 h, and the reductions in biofilm cell culturability and total biomass were monitored by counting colony-forming units and crystal violet assay, respectively. Both probiotics significantly reduced the culturability of E. coli and S. aureus biofilms, mainly after 24 h of exposure, with reduction percentages of 70% and 77% for L. plantarum and 76% and 63% for L. rhamnosus, respectively. Additionally, the amount of E. coli biofilm determined by CV staining was maintained approximately constant after 6 h of probiotic contact and significantly reduced up to 67% after 24 h. For S. aureus, only L. rhamnosus caused a significant effect on biofilm amount after 6 h of treatment. Hence, this study demonstrated the potential of lactobacilli to control the development of pre-established uropathogenic biofilms.

19.
Microorganisms ; 9(9)2021 Sep 21.
Article En | MEDLINE | ID: mdl-34576888

The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions-modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices-and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.

20.
Mar Drugs ; 19(7)2021 Jul 02.
Article En | MEDLINE | ID: mdl-34356809

The growing requirement for sustainable processes has boosted the development of biodegradable plastic-based materials incorporating bioactive compounds obtained from waste, adding value to these products. Chitosan (Ch) is a biopolymer that can be obtained by deacetylation of chitin (found abundantly in waste from the fishery industry) and has valuable properties such as biocompatibility, biodegradability, antimicrobial activity, and easy film-forming ability. This study aimed to produce and characterize poly(lactic acid) (PLA) surfaces coated with ß-chitosan and ß-chitooligosaccharides from a Loligo opalescens pen with different molecular weights for application in the food industry. The PLA films with native and depolymerized Ch were functionalized through plasma oxygen treatment followed by dip-coating, and their physicochemical properties were assessed by Fourier-transform infrared spectroscopy, X-ray diffraction, water contact angle, and scanning electron microscopy. Their antimicrobial properties were assessed against Escherichia coli and Pseudomonas putida, where Ch-based surfaces reduced the number of biofilm viable, viable but nonculturable, and culturable cells by up to 73%, 74%, and 87%, respectively, compared to PLA. Biofilm growth inhibition was confirmed by confocal laser scanning microscopy. Results suggest that Ch films of higher molecular weight had higher antibiofilm activity under the food storage conditions mimicked in this work, contributing simultaneously to the reuse of marine waste.


Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Loligo , Animals , Aquatic Organisms , Biofilms/drug effects , Escherichia coli/drug effects , Food Packaging , Molecular Weight , Spectroscopy, Fourier Transform Infrared
...