Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(7): 100780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703893

RESUMEN

New tools for cell signaling pathway inference from multi-omics data that are independent of previous knowledge are needed. Here, we propose a new de novo method, the de novo multi-omics pathway analysis (DMPA), to model and combine omics data into network modules and pathways. DMPA was validated with published omics data and was found accurate in discovering reported molecular associations in transcriptome, interactome, phosphoproteome, methylome, and metabolomics data, and signaling pathways in multi-omics data. DMPA was benchmarked against module discovery and multi-omics integration methods and outperformed previous methods in module and pathway discovery especially when applied to datasets of relatively low sample sizes. Transcription factor, kinase, subcellular location, and function prediction algorithms were devised for transcriptome, phosphoproteome, and interactome modules and pathways, respectively. To apply DMPA in a biologically relevant context, interactome, phosphoproteome, transcriptome, and proteome data were collected from analyses carried out using melanoma cells to address gamma-secretase cleavage-dependent signaling characteristics of the receptor tyrosine kinase TYRO3. The pathways modeled with DMPA reflected the predicted function and its direction in validation experiments.


Asunto(s)
Proteómica , Transducción de Señal , Humanos , Proteómica/métodos , Algoritmos , Transcriptoma , Metabolómica/métodos , Biología Computacional/métodos , Proteoma/metabolismo , Fosfoproteínas/metabolismo , Multiómica
2.
Nat Commun ; 13(1): 6953, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376313

RESUMEN

The ErbB4 receptor isoforms JM-a and JM-b differ within their extracellular juxtamembrane (eJM) domains. Here, ErbB4 isoforms are used as a model to address the effect of structural variation in the eJM domain of receptor tyrosine kinases (RTK) on downstream signaling. A specific JM-a-like sequence motif is discovered, and its presence or absence (in JM-b-like RTKs) in the eJM domains of several RTKs is demonstrated to dictate selective STAT activation. STAT5a activation by RTKs including the JM-a like motif is shown to involve interaction with oligosaccharides of N-glycosylated cell surface proteins such as ß1 integrin, whereas STAT5b activation by JM-b is dependent on TYK2. ErbB4 JM-a- and JM-b-like RTKs are shown to associate with specific signaling complexes at different cell surface compartments using analyses of RTK interactomes and super-resolution imaging. These findings provide evidence for a conserved mechanism linking a ubiquitous extracellular motif in RTKs with selective intracellular STAT signaling.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-4/metabolismo , Isoformas de Proteínas/metabolismo , Membrana Celular/metabolismo , Fosforilación
3.
J Biol Chem ; 295(33): 11559-11571, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32561640

RESUMEN

ERBB4 is a member of the epidermal growth factor receptor (EGFR)/ERBB subfamily of receptor tyrosine kinases that regulates cellular processes including proliferation, migration, and survival. ERBB4 signaling is involved in embryogenesis and homeostasis of healthy adult tissues, but also in human pathologies such as cancer, neurological disorders, and cardiovascular diseases. Here, an MS-based analysis revealed the Vav guanine nucleotide exchange factor 3 (VAV3), an activator of Rho family GTPases, as a critical ERBB4-interacting protein in breast cancer cells. We confirmed the ERBB4-VAV3 interaction by targeted MS and coimmunoprecipitation experiments and further defined it by demonstrating that kinase activity and Tyr-1022 and Tyr-1162 of ERBB4, as well as the intact phosphotyrosine-interacting SH2 domain of VAV3, are necessary for this interaction. We found that ERBB4 stimulates tyrosine phosphorylation of the VAV3 activation domain, known to be required for guanine nucleotide exchange factor (GEF) activity of VAV proteins. In addition to VAV3, the other members of the VAV family, VAV1 and VAV2, also coprecipitated with ERBB4. Analyses of the effects of overexpression of dominant-negative VAV3 constructs or shRNA-mediated down-regulation of VAV3 expression in breast cancer cells indicated that active VAV3 is involved in ERBB4-stimulated cell migration. These results define the VAV GEFs as effectors of ERBB4 activity in a signaling pathway relevant for cancer cell migration.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Proteínas Proto-Oncogénicas c-vav/metabolismo , Receptor ErbB-4/metabolismo , Animales , Neoplasias de la Mama/patología , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Células 3T3 NIH , Mapas de Interacción de Proteínas
4.
Oncogene ; 38(2): 151-163, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30166589

RESUMEN

Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Humanos
5.
Mol Biol Cell ; 28(22): 3123-3131, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904208

RESUMEN

Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, however, it is unknown whether they can exploit this new signaling mechanism. Here we used a system-wide screen to address the frequency of susceptibility to gamma-secretase cleavage among human RTKs. The screen covering 45 of the 55 human RTKs identified 12 new as well as all nine previously published gamma-secretase substrates. We biochemically validated the screen by demonstrating that the release of a soluble intracellular fragment from endogenous AXL was dependent on the sheddase disintegrin and metalloprotease 10 (ADAM10) and the gamma-secretase component presenilin-1. Functional analysis of the cleavable RTKs indicated that proliferation promoted by overexpression of the TAM family members AXL or TYRO3 depends on gamma-secretase cleavage. Taken together, these data indicate that gamma-secretase-mediated cleavage provides an additional signaling mechanism for numerous human RTKs.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Línea Celular , Membrana Celular/metabolismo , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA