Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
J Autoimmun ; 143: 103167, 2024 02.
Article En | MEDLINE | ID: mdl-38301504

IL-23-activation of IL-17 producing T cells is involved in many rheumatic diseases. Herein, we investigate the role of IL-23 in the activation of myeloid cell subsets that contribute to skin inflammation in mice and man. IL-23 gene transfer in WT, IL-23RGFP reporter mice and subsequent analysis with spectral cytometry show that IL-23 regulates early innate immune events by inducing the expansion of a myeloid MDL1+CD11b+Ly6G+ population that dictates epidermal hyperplasia, acanthosis, and parakeratosis; hallmark pathologic features of psoriasis. Genetic ablation of MDL-1, a major PU.1 transcriptional target during myeloid differentiation exclusively expressed in myeloid cells, completely prevents IL-23-pathology. Moreover, we show that IL-23-induced myeloid subsets are also capable of producing IL-17A and IL-23R+MDL1+ cells are present in the involved skin of psoriasis patients and gene expression correlations between IL-23 and MDL-1 have been validated in multiple patient cohorts. Collectively, our data demonstrate a novel role of IL-23 in MDL-1-myelopoiesis that is responsible for skin inflammation and related pathologies. Our data open a new avenue of investigations regarding the role of IL-23 in the activation of myeloid immunoreceptors and their role in autoimmunity.


Arthritis, Psoriatic , Dermatitis , Psoriasis , Humans , Arthritis, Psoriatic/pathology , Interleukin-17/genetics , Interleukin-17/metabolism , Neutrophils/metabolism , Skin/pathology , Dermatitis/pathology , Inflammation , Interleukin-23/genetics , Interleukin-23/metabolism , Receptors, Cell Surface/metabolism , Lectins, C-Type/genetics
2.
PLoS Pathog ; 19(10): e1011703, 2023 Oct.
Article En | MEDLINE | ID: mdl-37883374

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Using scRNA-seq, we demonstrate that KSHV preferentially infects CD14+ monocytes, sustains viral lytic replication through the viral interleukin-6 (vIL-6), which activates STAT1 and 3, and induces an inflammatory gene expression program. To study the role of vIL-6 in monocytes upon KSHV infection, we generated recombinant KSHV with premature stop codon (vIL-6(-)) and its revertant viruses (vIL-6(+)). Infection of the recombinant viruses shows that both vIL-6(+) and vIL-6(-) KSHV infection induced indistinguishable host anti-viral response with STAT1 and 3 activations in monocytes; however, vIL-6(+), but not vIL-6(-), KSHV infection promoted the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL-6(+) KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL-6(-) KSHV infection or uninfected control. Notably, a viral nuclear long noncoding RNA (PAN RNA), which is required for sustaining KSHV gene expression, was substantially reduced in infected primary monocytes upon vIL-6(-) KSHV infection. These results highlight the critical role of vIL-6 in sustaining KSHV transcription in primary monocytes. Our findings also imply a clever strategy in which KSHV utilizes vIL-6 to secure its viral pool by expanding infected monocytes via differentiating into longer-lived dysfunctional macrophages. This mechanism may facilitate KSHV to escape from host immune surveillance and to support a lifelong infection.


Herpesviridae Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Interleukin-6/metabolism , Monocytes/metabolism , Herpesviridae Infections/metabolism , Macrophages/metabolism , Immunologic Factors/metabolism , Virus Replication
3.
Nat Commun ; 14(1): 5332, 2023 09 02.
Article En | MEDLINE | ID: mdl-37658083

Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy
4.
bioRxiv ; 2023 Mar 26.
Article En | MEDLINE | ID: mdl-36945595

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Here we demonstrate that KSHV preferentially infects CD14 + monocytes and sustains viral replication through the viral interleukin-6 (vIL6)-mediated activation of STAT1 and 3. Using vIL6-sufficient and vIL6-deficient recombinant KSHV, we demonstrated that vIL6 plays a critical role in promoting the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL6-sufficient KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL6-deficient KSHV infection or uninfected control. These results highlight a clever strategy, in which KSHV utilizes vIL6 to secure its viral pool by expanding infected dysfunctional macrophages. This mechanism also facilitates KSHV to escape from host immune surveillance and to establish a lifelong infection. 160. Summary: KSHV causes multiple inflammatory diseases, however, the underlying mechanism is not clear. Shimoda et al. demonstrate that KSHV preferentially infects monocytes and utilizes virally encoded interleukin-6 to expand and deregulate infected monocytes. This helps the virus escape from host immune surveillance.

5.
JAMA Dermatol ; 159(3): 337-338, 2023 03 01.
Article En | MEDLINE | ID: mdl-36652229

This comparative effectiveness research study assesses the discriminatory ability of diagnostic criteria for pyoderma gangrenosum.


Colitis, Ulcerative , Pyoderma Gangrenosum , Humans , Pyoderma Gangrenosum/diagnosis , Colitis, Ulcerative/diagnosis
6.
J Invest Dermatol ; 143(7): 1157-1167.e10, 2023 07.
Article En | MEDLINE | ID: mdl-36716917

ERAP1, ERAP2, and LNPEP are aminopeptidases implicated in autoimmune pathophysiology. In this study, we show that ERAP2 is upregulated and ERAP1 is downregulated in patients with psoriasis who are homozygous for autoimmune-linked variants of ERAP. We also demonstrate that aminopeptidase expression is not uniform in the skin. Specifically, the intracellular antigen-processing aminopeptidases ERAP1 and ERAP2 are strongly expressed in basal and early spinous layer keratinocytes, whereas granular layer keratinocytes expressed predominantly LNPEP, an aminopeptidase specialized in the processing of extracellular antigens for presentation to T cells. In psoriasis, basal keratinocytes also expressed the T-cell- and monocyte-attracting chemokine, CCL2, and the T-cell-supporting cytokine, IL-15. In contrast, TGF-ß1 was the major cytokine expressed by healthy control basal keratinocytes. SFRP2-high dermal fibroblasts were also noted to have an ERAP2-high expression phenotype and elevated HLA-C. In psoriasis, the SFRP2-high fibroblast subpopulation also expressed elevated CXCL14. From these results, we postulate that (i) an increased ERAP2/ERAP1 ratio results in altered antigen processing, a potential mechanism by which ERAP risk alleles predispose individuals to autoimmunity; (ii) ERAP2-high expressing cells display a unique major histocompatibility complex-bound peptidome generated from intracellular antigens; and (iii) the granular layer peptidome is skewed toward extracellular antigens.


Genetic Predisposition to Disease , Psoriasis , Humans , Aminopeptidases/genetics , Psoriasis/genetics , Phenotype , Cytokines/genetics , Minor Histocompatibility Antigens/genetics , Polymorphism, Single Nucleotide
7.
JCI Insight ; 7(16)2022 08 22.
Article En | MEDLINE | ID: mdl-35900871

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.


Epidermis , Single-Cell Analysis , Carbon/metabolism , Ceramides/metabolism , Epidermis/metabolism , Humans , Keratinocytes/metabolism
8.
JCI Insight ; 7(16)2022 08 22.
Article En | MEDLINE | ID: mdl-35862195

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a posttranslational regulator of the LDL receptor (LDLR). Recent studies have proposed a role for PCSK9 in regulating immune responses. Using RNA-Seq-based variant discovery, we identified a possible psoriasis-susceptibility locus at 1p32.3, located within PCSK9 (rs662145 C > T). This finding was verified in independently acquired genomic and RNA-Seq data sets. Single-cell RNA-Seq (scRNA-Seq) identified keratinocytes as the primary source of PCSK9 in human skin. PCSK9 expression, however, was not uniform across keratinocyte subpopulations. scRNA-Seq and IHC demonstrated an epidermal gradient of PCSK9, with expression being highest in basal and early spinous layer keratinocytes and lowest in granular layer keratinocytes. IL36G expression followed the opposite pattern, with expression highest in granular layer keratinocytes. PCSK9 siRNA knockdown experiments confirmed this inverse relationship between PCSK9 and IL36G expression. Other immune genes were also linked to PCSK9 expression, including IL27RA, IL1RL1, ISG20, and STX3. In both cultured keratinocytes and nonlesional human skin, homozygosity for PCSK9 SNP rs662145 C > T was associated with lower PCSK9 expression and higher IL36G expression, when compared with heterozygous skin or cell lines. Together, these results support PCSK9 as a psoriasis-susceptibility locus and establish a putative link between PCSK9 and inflammatory cytokine expression.


Proprotein Convertase 9 , Psoriasis , Humans , Interleukin-1 , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Psoriasis/genetics , Serine Endopeptidases/metabolism , Subtilisins/genetics
9.
Cell Rep ; 39(6): 110788, 2022 05 10.
Article En | MEDLINE | ID: mdl-35545047

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.


Herpesvirus 8, Human , RNA, Long Noncoding , Sarcoma, Kaposi , Antigens, Viral/genetics , Antigens, Viral/metabolism , Chromosomes/metabolism , Herpesvirus 8, Human/genetics , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Plasmids , RNA, Long Noncoding/genetics , Tumor Microenvironment , Virus Latency/genetics
11.
Arthritis Rheumatol ; 74(9): 1524-1534, 2022 09.
Article En | MEDLINE | ID: mdl-35320625

OBJECTIVE: This study was undertaken to identify the mechanistic role of γδ T cells in the pathogenesis of experimental psoriatic arthritis (PsA). METHODS: In this study, we performed interleukin-23 (IL-23) gene transfer in wild-type (WT) and T cell receptor δ-deficient (TCRδ-/- ) mice and conducted tissue phenotyping in the joint, skin, and nails to characterize the inflammatory infiltrate. We further performed detailed flow cytometry, immunofluorescence staining, RNA sequencing, T cell repertoire analysis, and in vitro T cell polarization assays to identify regulatory mechanisms of γδ T cells. RESULTS: We demonstrated that γδ T cells support systemic granulopoiesis, which is critical for murine PsA-like pathology. Briefly, γδ T cell ablation inhibited the expression of neutrophil chemokines CXCL1 and CXCL2 and neutrophil CD11b+Ly6G+ accumulation in the aforementioned PsA-related tissues. Although significantly reduced expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A was detected systemically in TCRδ-/- mice, no GM-CSF+/IL-17A+ γδ T cells were detected locally in the inflamed skin or bone marrow in WT mice. Our data showed that nonresident γδ T cells regulate the expansion of an CD11b+Ly6G+ neutrophil population and their recruitment to joint and skin tissues, where they develop hallmark pathologic features of human PsA. CONCLUSION: Our findings do not support the notion that tissue-resident γδ T cells initiate the disease but demonstrate a novel role of γδ T cells in neutrophil regulation that can be exploited therapeutically in PsA patients.


Arthritis, Experimental , Arthritis, Psoriatic , Animals , Arthritis, Experimental/genetics , Arthritis, Psoriatic/metabolism , Humans , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism
12.
Front Immunol ; 12: 752484, 2021.
Article En | MEDLINE | ID: mdl-34707616

The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the occurrence of acute and chronic graft-versus-host disease (GVHD). We have recently demonstrated that obesity results in exacerbated acute gastrointestinal GVHD in both mouse models and clinical outcomes due to increased pro-inflammatory cytokine responses and microbiota alterations. We therefore wanted to delineate the role of the various parameters in obesity, adiposity, effects of high-fat (HF) diet, and the role of microbiome on GVHD pathogenesis, by taking advantage of a mouse strain resistant to diet-induced obesity (DIO). Female BALB/c mice are resistant to DIO phenotype with approximately 50% becoming DIO under HF diets. The DIO-susceptible recipients rapidly succumb to acute gut GVHD, whereas the DIO-resistant recipient littermates, which do not become obese, are partially protected from GVHD, indicating that being on HF diet alone contributes to but is not the primary driver of GVHD. Microbiome assessment revealed restricted diversity in both cohorts of mice, but coprophagy normalizes the microbiota in mice housed together. We then individually housed DIO-resistant, DIO-susceptible, and lean control mice. Notably, each of the individually housed groups demonstrates marked restricted diversity that has been shown to occur from the stress of single housing. Despite the restricted microbiome diversity, the GVHD pathogenesis profile remains consistent in the group-housed mice, with the lean control single-housed mice exhibiting no acute GVHD and DIO-resistant recipients showing again partial protection. These results demonstrate that the deleterious effects of obesity on acute gut GVHD are critically dependent on adiposity with the HF diet also playing a lesser role, and the microbiome alterations with obesity instead appear to fuel ongoing acute GVHD processes.


Adiposity , Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation/adverse effects , Obesity , Animals , Diet, High-Fat , Female , Mice , Mice, Inbred BALB C
14.
Clin Immunol ; 230: 108825, 2021 09.
Article En | MEDLINE | ID: mdl-34403816

We have recently introduced multiple reaction monitoring (MRM) mass spectrometry as a novel tool for glycan biomarker research and discovery. Herein, we employ this technique to characterize the site-specific glycan alterations associated with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Glycopeptides associated with disease severity were also identified. Multinomial regression modelling was employed to construct and validate multi-analyte diagnostic models capable of accurately distinguishing PBC, PSC, and healthy controls from one another (AUC = 0.93 ± 0.03). Finally, to investigate how disease-relevant environmental factors can influence glycosylation, we characterized the ability of bile acids known to be differentially expressed in PBC to alter glycosylation. We hypothesize that this could be a mechanism by which altered self-antigens are generated and become targets for immune attack. This work demonstrates the utility of the MRM method to identify diagnostic site-specific glycan classifiers capable of distinguishing even related autoimmune diseases from one another.


Autoimmunity , Cholangitis, Sclerosing/immunology , Liver Cirrhosis, Biliary/immunology , Polysaccharides/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bile Acids and Salts/blood , Bile Acids and Salts/immunology , Biomarkers/blood , Case-Control Studies , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/diagnosis , Diagnosis, Differential , Glycomics/methods , Glycopeptides/blood , Glycopeptides/immunology , Glycosylation , Humans , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/diagnosis , Polysaccharides/blood , Spectrometry, Mass, Electrospray Ionization/methods
15.
Front Immunol ; 12: 679675, 2021.
Article En | MEDLINE | ID: mdl-34220826

Alloreactive regulatory T cells (arTregs) are more potent than polyclonal Tregs at suppressing immune responses to transplant antigens. Human arTregs can be expanded with allogeneic CD40L-stimulated B cells (sBcs) or stimulated-matured monocyte-derived dendritic cells (sDCs). Here, we compared the expansion efficiency and properties of arTregs stimulated ex vivo using these two types of antigen-presenting cells. Compared to sBcs, sDCs stimulated Tregs to expand two times more in number. The superior expansion-inducing capacity of sDCs correlated with their higher expression of CD80, CD86, and T cell-attracting chemokines. sBc- and sDC-arTregs expressed comparable levels of FOXP3, HELIOS, CD25, CD27, and CD62L, demethylated FOXP3 enhancer and in vitro suppressive function. sBc- and sDCs-arTregs had similar gene expression profiles that were distinct from primary Tregs. sBc- and sDC-arTregs exhibited similar low frequencies of IFN-γ, IL-4, and IL-17A-producing cells, and the cytokine-producing arTregs expressed high levels of FOXP3. Almost all sBc- and sDC-arTregs expressed CXCR3, which may enable them traffic to inflammatory sites. Thus, sDCs-arTregs that expand more readily, are phenotypically similar to sBc-arTregs, supporting sDCs as a viable alternative for arTreg production for clinical evaluation.


B-Lymphocytes/immunology , Cell Culture Techniques , Dendritic Cells/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , B-Lymphocytes/metabolism , Biomarkers , Cells, Cultured , Cytokines/biosynthesis , Dendritic Cells/metabolism , Humans , Immunophenotyping , Isoantigens/immunology , Lymphocyte Culture Test, Mixed , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity , T-Lymphocytes, Regulatory/cytology
16.
Clin Cancer Res ; 27(17): 4726-4736, 2021 09 01.
Article En | MEDLINE | ID: mdl-34088724

PURPOSE: Rituximab and lenalidomide are effective for previously untreated and relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). However, long-term survival and predictive biomarkers are not well described. PATIENTS AND METHODS: We conducted two phase II open-label trials involving 60 patients with previously untreated and R/R advanced-stage iNHL. Patients received lenalidomide and rituximab induction followed by continuous lenalidomide until disease progression or unacceptable toxicity. The primary endpoint was overall response rate (ORR). Correlative studies included plasma cytokine monitoring, flow cytometry of peripheral blood mononuclear cells (PBMC; days 0, 15, 30, and 60), and RNA sequencing (RNA-seq) of pretreatment tumor biopsies. RESULTS: At a median follow-up of 63 months for previously untreated and 100 months for R/R, ORR was 82% for both. The 11 R/R patients who achieved complete remission remained in continuous remission for 16 to 141 months, thereafter. Median overall survival (OS) was not reached in the previously untreated and was 140 months (95% confidence interval, 53.4-140) in the R/R group. A mixed-effects linear regression model identified significant associations between Granzyme B+ (GranB+) CD8+ T cells and long-term complete response (LTCR; P = 5.3e-4). Furthermore, prior to start of therapy, treatment response could be predicted by B-cell and GranB+ CD8+ T-cell levels (% total lymphocytes). CONCLUSIONS: Rituximab plus lenalidomide followed by continuous lenalidomide is effective with manageable toxicity in patients with previously untreated and R/R iNHL. This regimen produces durable remissions, even in heavily pretreated patients, with some lasting greater than 10 years. GranB+ CD8+ T cells, B cells, and plasma IFNγ allowed prediction of LTCR but need validation in larger trials.


Leukocytes, Mononuclear , Lymphoma, Non-Hodgkin , Antineoplastic Combined Chemotherapy Protocols/adverse effects , CD8-Positive T-Lymphocytes , Follow-Up Studies , Humans , Lenalidomide , Lymphoma, Non-Hodgkin/drug therapy , Rituximab/therapeutic use
18.
J Invest Dermatol ; 141(10): 2436-2448, 2021 10.
Article En | MEDLINE | ID: mdl-33864770

Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.


Epidermis/pathology , Inflammation/etiology , Interleukin-1 Receptor-Associated Kinases/physiology , Cell Differentiation , Cells, Cultured , Dermatitis, Atopic/etiology , Humans , NF-kappa B/physiology , Psoriasis/etiology , Severity of Illness Index , Signal Transduction , Transcription Factors/physiology , Tumor Suppressor Proteins/physiology
19.
Sci Rep ; 11(1): 7315, 2021 04 01.
Article En | MEDLINE | ID: mdl-33795767

Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions. Our previous research demonstrated that high fluence RL reduces fibroblast proliferation, collagen deposition, and migration. Despite the identification of several cellular mechanisms underpinning RL phototherapy, little is known about the transcriptional changes that lead to anti-fibrotic cellular responses. Herein, RNA sequencing was performed on human dermal fibroblasts treated with RL phototherapy. Pathway enrichment and transcription factor analysis revealed regulation of extracellular matrices, proliferation, and cellular responses to oxygen-containing compounds following RL phototherapy. Specifically, RL phototherapy increased the expression of MMP1, which codes for matrix metalloproteinase-1 (MMP-1) and is responsible for remodeling extracellular collagen. Differential regulation of MMP1 was confirmed with RT-qPCR and ELISA. Additionally, RL upregulated PRSS35, which has not been previously associated with skin activity, but has known anti-fibrotic functions. Our results suggest that RL may benefit patients by altering fibrotic gene expression.


Fibroblasts/metabolism , Fibroblasts/radiation effects , Phototherapy/methods , Skin/metabolism , Skin/radiation effects , Transcriptome , Adult , Cell Movement , Cell Proliferation , Collagen/metabolism , Female , Fibrosis , Gene Expression Profiling , Humans , Male , Matrix Metalloproteinase 1/biosynthesis , Middle Aged , Oxidative Stress , Oxygen/metabolism , RNA-Seq , Reactive Oxygen Species , Skin Diseases/metabolism , Time Factors , Transcription Factors
20.
J Clin Invest ; 131(5)2021 03 01.
Article En | MEDLINE | ID: mdl-33645549

IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL­36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL­36R-blocking antibody-treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL­36 cytokines in human atopic dermatitis skin and in IL­36 receptor antagonist-deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL­36 responses represent a key mechanism and potential therapeutic target against allergic diseases.


Dermatitis, Atopic/immunology , Immunoglobulin E/immunology , Interleukin-1/immunology , Keratinocytes/immunology , Plasma Cells/immunology , Staphylococcus aureus/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/microbiology , Humans , Immunoglobulin Class Switching , Immunoglobulin E/genetics , Interleukin-1/genetics , Interleukin-4/genetics , Interleukin-4/immunology , Keratinocytes/microbiology , Mice , Mice, Knockout , Plasma Cells/pathology
...