Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058094

RESUMEN

The Hippo signaling pathway is commonly dysregulated in human cancer, which leads to a powerful tumor dependency on the YAP/TAZ transcriptional coactivators. Here, we used paralog co-targeting CRISPR screens to identify the kinases MARK2/3 as absolute catalytic requirements for YAP/TAZ function in diverse carcinoma and sarcoma contexts. Underlying this observation is direct MARK2/3-dependent phosphorylation of NF2 and YAP/TAZ, which effectively reverses the tumor suppressive activity of the Hippo module kinases LATS1/2. To simulate targeting of MARK2/3, we adapted the CagA protein from H. pylori as a catalytic inhibitor of MARK2/3, which we show can regress established tumors in vivo. Together, these findings reveal MARK2/3 as powerful co-dependencies of YAP/TAZ in human cancer; targets that may allow for pharmacology that restores Hippo pathway-mediated tumor suppression.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38503500

RESUMEN

The broad application of noninvasive imaging has transformed preclinical cancer research, providing a powerful means to measure dynamic processes in living animals. While imaging technologies are routinely used to monitor tumor growth in model systems, their greatest potential lies in their ability to answer fundamental biological questions. Here we present the broad range of potential imaging applications according to the needs of a cancer biologist with a focus on some of the common biological processes that can be used to visualize and measure. Topics include imaging metastasis; biophysical properties such as perfusion, diffusion, oxygenation, and stiffness; imaging the immune system and tumor microenvironment; and imaging tumor metabolism. We also discuss the general ability of each approach and the level of training needed to both acquire and analyze images. The overall goal is to provide a practical guide for cancer biologists interested in answering biological questions with preclinical imaging technologies.

3.
Methods Mol Biol ; 2729: 285-301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38006503

RESUMEN

The relatively recent discovery of CRISPR/Cas has led to a revolution in our ability to efficiently manipulate the genome of eukaryotic cells. We describe here a protocol that employs CRISPR technology to precisely knock-in a PET imaging reporter transgene into a specific genetic locus of interest. Resulting transcription of the targeted reporter will more accurately mimic physiologic expression of the endogenous allele than conventional approaches, and so this method has the potential to become an efficient way to generate a new generation of "gold-standard" reporter transgenes. We break down the protocol into three experimental stages: how to identify the genomic location that the reporter transgene will be inserted, how to practically insert the reporter transgene into the genome, and how to screen resultant clones for the correct targeted event.


Asunto(s)
Sistemas CRISPR-Cas , Genoma , Sistemas CRISPR-Cas/genética , Genes Reporteros , Transgenes , Técnicas de Sustitución del Gen , Ingeniería Genética
4.
Cell Stress ; 7(8): 59-68, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37664695

RESUMEN

Non-invasive imaging of tumors expressing reporter transgenes is a popular preclinical method for studying tumor development and response to therapy in vivo due to its ability to distinguish signal from tumors over background noise. However, the utilized transgenes, such as firefly luciferase, are immunogenic and, therefore, impact results when expressed in immune-competent hosts. This represents an important limitation, given that cancer immunology and immunotherapy are currently among the most impactful areas of research and therapeutic development. Here we present a non-immunogenic preclinical tumor imaging approach. Based on the expression of murine sodium iodide symporter (mNIS), it facilitates sensitive, non-invasive detection of syngeneic tumor cells in immune-competent tumor models without additional immunogenicity arising from exogenous transgenic protein or selection marker expression. NIS-expressing tumor cells internalize the gamma-emitting [99mTc]pertechnetate ion and so can be detected by SPECT (single photon emission computed tomography). Using a mouse model of pancreatic ductal adenocarcinoma hepatic metastases in immune-competent C57BL/6 mice, we demonstrate that the technique enables the detection of very early metastatic lesions and longitudinal assessment of immunotherapy responses using precise and quantifiable whole-body SPECT/CT imaging.

5.
JCI Insight ; 7(14)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866483

RESUMEN

Acute lung injury (ALI) can cause acute respiratory distress syndrome (ARDS), a lethal condition with limited treatment options and currently a common global cause of death due to COVID-19. ARDS secondary to transfusion-related ALI (TRALI) has been recapitulated preclinically by anti-MHC-I antibody administration to LPS-primed mice. In this model, we demonstrate that inhibitors of PTP1B, a protein tyrosine phosphatase that regulates signaling pathways of fundamental importance to homeostasis and inflammation, prevented lung injury and increased survival. Treatment with PTP1B inhibitors attenuated the aberrant neutrophil function that drives ALI and was associated with release of myeloperoxidase, suppression of neutrophil extracellular trap (NET) formation, and inhibition of neutrophil migration. Mechanistically, reduced signaling through the CXCR4 chemokine receptor, particularly to the activation of PI3Kγ/AKT/mTOR, was essential for these effects, linking PTP1B inhibition to promoting an aged-neutrophil phenotype. Considering that dysregulated activation of neutrophils has been implicated in sepsis and causes collateral tissue damage, we demonstrate that PTP1B inhibitors improved survival and ameliorated lung injury in an LPS-induced sepsis model and improved survival in the cecal ligation and puncture-induced (CLP-induced) sepsis model. Our data highlight the potential for PTP1B inhibition to prevent ALI and ARDS from multiple etiologies.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Síndrome de Dificultad Respiratoria , Sepsis , Lesión Pulmonar Aguda/metabolismo , Animales , Lipopolisacáridos/farmacología , Ratones , Neutrófilos , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones
6.
JCI Insight ; 7(5)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133984

RESUMEN

Severe acute lung injury has few treatment options and a high mortality rate. Upon injury, neutrophils infiltrate the lungs and form neutrophil extracellular traps (NETs), damaging the lungs and driving an exacerbated immune response. Unfortunately, no drug preventing NET formation has completed clinical development. Here, we report that disulfiram - an FDA-approved drug for alcohol use disorder - dramatically reduced NETs, increased survival, improved blood oxygenation, and reduced lung edema in a transfusion-related acute lung injury (TRALI) mouse model. We then tested whether disulfiram could confer protection in the context of SARS-CoV-2 infection, as NETs are elevated in patients with severe COVID-19. In SARS-CoV-2-infected golden hamsters, disulfiram reduced NETs and perivascular fibrosis in the lungs, and it downregulated innate immune and complement/coagulation pathways, suggesting that it could be beneficial for patients with COVID-19. In conclusion, an existing FDA-approved drug can block NET formation and improve disease course in 2 rodent models of lung injury for which treatment options are limited.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , COVID-19/complicaciones , Disulfiram/farmacología , Trampas Extracelulares/efectos de los fármacos , Pulmón/inmunología , SARS-CoV-2 , Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Lesión Pulmonar Aguda/etiología , Animales , COVID-19/virología , Modelos Animales de Enfermedad , Trampas Extracelulares/inmunología , Roedores
7.
Diagnostics (Basel) ; 11(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925560

RESUMEN

The study aims to assess site assessment of the performance of 18F-PBR-111 as a neuroinflammation marker in the cuprizone mouse model of multiple sclerosis (MS). 18F-PBR-111 PET imaging has not been well evaluated in multiple sclerosis applications both in preclinical and clinical research. This study will help establish the potential utility of 18F-PBR-111 PET in preclinical MS research and future animal and future human applications. 18F-PBR-111 PET/CT was conducted at 3.5 weeks (n = 7) and 5.0 weeks (n = 7) after cuprizone treatment or sham control (n = 3) in the mouse model. A subgroup of mice underwent autoradiography with cryosectioned brain tissue. T2 weighted MRI was performed to obtain the brain structural data of each mouse. 18F-PBR-111 uptake was assessed in multiple brain regions with PET and autoradiography images. The correlation between autoradiography and immunofluorescence staining of neuroinflammation (F4/80 and CD11b) was measured. Compared to control mice, significant 18F-PBR-111 uptake in the corpus callosum (p < 0.001), striatum (caudate and internal capsule, p < 0.001), and hippocampus (p < 0.05) was identified with PET images at both 3.5 weeks and 5.0 weeks, and validated with autoradiography. No significant uptake differences were detected between 3.5 weeks and 5.0 weeks assessing these regions as a whole, although there was a trend of increased uptake at 5.0 weeks compared to 3.5 weeks in the CC. High 18F-PBR-111 uptake regions correlated with microglial/macrophage locations by immunofluorescence staining with F4/80 and CD11b antibodies. 18F-PBR-111 uptake in anatomic locations correlated with activated microglia at histology in the cuprizone mouse model of MS suggests that 18F-PBR-111 has potential for in vivo evaluation of therapy response and potential for use in MS patients and animal studies.

8.
Clin Immunol ; 197: 45-53, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30149119

RESUMEN

IL-11 induced differentiation and expansion of Th17 cells in patients with early relapsing-remitting multiple sclerosis (RRMS). In mice with relapsing-remitting experimental autoimmune encephalomyelitis (RREAE), IL-11 exacerbated disease, induced demyelination in the central nervous system (CNS), increased the percentage of IL-17A+CD4+ Th17 cells in the CNS in the early acute phase, and up-regulated serum IL-17A levels and the percentage of IL-17A+CD4+ Th17 cells in lymph nodes, and IFN-γ+CD4+ T cells in spinal cord in the RR phase. IL-11 antagonist suppressed RREAE disease activities, inhibited IL-17A+CD4+ cell infiltration and demyelination in the CNS, and decreased the percentage of IL-17A+CD4+ T cells in peripheral blood mononuclear cells and ICAM1+CD4+ T cells in brain and SC. Diffusion Tensor Imaging indicated that IL-11 antagonist inhibited demyelination in several brain regions. We conclude that by suppressing Th17 cell-mediated neuroinflammation and demyelination, IL-11 antagonist can be further studied as a potential selective and early therapy for RRMS.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-11/antagonistas & inhibidores , Médula Espinal/diagnóstico por imagen , Células Th17/inmunología , Animales , Encéfalo/inmunología , Imagen de Difusión Tensora , Inflamación , Interleucina-11/inmunología , Subunidad alfa del Receptor de Interleucina-11 , Leucocitos Mononucleares , Ratones , Esclerosis Múltiple Recurrente-Remitente , Proteínas Recombinantes de Fusión , Médula Espinal/inmunología
9.
Sci Rep ; 7(1): 17355, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29230065

RESUMEN

Risks of radiation exposure from nuclear incidents and cancer radiotherapy are undeniable realities. These dangers urgently compel the development of agents for ameliorating radiation-induced injuries. Biologic pathways mediated by myeloid differentiation primary response gene 88 (MyD88), the common adaptor for toll-like receptor (TLR) and Interleukin-1 receptor signaling, are critical for radioprotection. Treating with agonists prior to radiation enhances survival by activating TLR signaling, whereas radiomitigating TLR-activating therapeutics given after exposure are less defined. We examine the radiomitigation capability of TLR agonists and identify one that is superior for its efficacy and reduced toxic consequences compared to other tested agonists. We demonstrate that the synthetic TLR2/6 ligand Fibroblast-stimulating lipopeptide (FSL-1) substantially prolongs survival in both male and female mice when administered 24 hours after radiation and shows MyD88-dependent function. FSL-1 treatment results in accelerated hematopoiesis in bone marrow, spleen and periphery, and augments systemic levels of hematopoiesis-stimulating factors. The ability of FSL-1 to stimulate hematopoiesis is critical, as hematopoietic dysfunction results from a range of ionizing radiation doses. The efficacy of a single FSL-1 dose for alleviating radiation injury while protecting against adverse effects reveals a viable radiation countermeasures agent.


Asunto(s)
Síndrome de Radiación Aguda/prevención & control , Diglicéridos/farmacología , Rayos gamma/efectos adversos , Oligopéptidos/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Protectores contra Radiación/farmacología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 6/agonistas , Síndrome de Radiación Aguda/metabolismo , Síndrome de Radiación Aguda/patología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
11.
Curr Radiopharm ; 9(3): 235-243, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27562785

RESUMEN

BACKGROUND AND OBJECTIVE: The hypoxia PET tracer, 1-[18F]fluoro-3-(2-nitro-1Himidazol- 1-yl)-propan-2-ol ([18F]FMISO) is the first radiotracer developed for hypoxia PET imaging and has shown promising for cancer diagnosis and prognosis. However, access to [18F]FMISO radiotracer is limited due to the needed cyclotron and radiochemistry expertise. The study aimed to develop the automated production method on the [18F]FMISO radiotracer with the novel fully automated platform of the BG75 system and validate its usage on animal tumor models. METHOD: [18F]FMISO was produced with the dose synthesis cartridge automatically on the BG75 system. Validation of [18F]FMISO hypoxia imaging functionality was conducted on two tumor mouse models (FaDu/U87 tumor). The distribution of [18F]FMISO within tumor was further validated by the standard hypoxia marker EF5. RESULTS: The average radiochemical purity was (99±1) % and the average pH was 5.5±0.2 with other quality attributes passing standard criteria (n=12). Overall biodistribution for [18F]FMISO in both tumor models was consistent with reported studies where bladder and large intestines presented highest activity at 90 min post injection. High spatial correlation was found between [18F]FMISO autoradiography and EF5 hypoxia staining, indicating high hypoxia specificity of [18MF]FMISO. CONCLUSION: This study shows that qualified [18F]FMISO can be efficiently produced on the BG75 system in an automated "dose-on-demand" mode using single dose disposable cards. The possibilities of having a low-cost, automated system manufacturing ([18F]Fluoride production + synthesis + QC) different radiotracers will greatly enhance the potential for PET technology to reach new geographical areas and underserved patient populations.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Misonidazol/análogos & derivados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacología , Animales , Autorradiografía , Hipoxia de la Célula , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Humanos , Ratones , Misonidazol/síntesis química , Misonidazol/farmacología , Interpretación de Imagen Radiográfica Asistida por Computador , Distribución Tisular
12.
Data Brief ; 7: 480-4, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27014735

RESUMEN

New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article "Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature" (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses.

13.
Biomaterials ; 84: 241-249, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26839954

RESUMEN

Tumor angiogenesis, the formation of new tumor blood supply, has been recognized as a hallmark of cancer and represents an important target for clinical management of various angiogenesis-dependent solid tumors. Previously, by screening a bacteriophage peptide library we have discovered the FHT-peptide sequence that binds specifically to bone marrow-derived tumor vasculature with high affinity. Here in an effort to determine the potential of the FHT-peptide for in vivo positron emission tomography (PET) imaging of aggressive tumor vasculature we studied four FHT-derivatives: NOTA-FHT, NOTA-(FHT)2, NOTA-PEG-FHT, and NOTA-PEG-(FHT)2. These peptide analogs were synthesized, labeled with the PET radionuclide (64)Cu, and characterized side-by-side with small animal PET and computed tomography imaging (microPET/CT) at 1 h, 4 h, and 24 h post injection in a subcutaneous Lewis lung carcinoma (LLC) tumor model. Because of its excellent in vivo kinetic properties and high tumor-to-background ratio, the (64)Cu-NOTA-FHT radiopeptide was selected for more detailed evaluation. Blocking studies with excess of unlabeled peptide showed specific and peptide mediated (64)Cu-NOTA-FHT tumor uptake. Biodistribution experiments in the same tumor model confirmed microPET/CT imaging results. Human radiation absorbed dose extrapolated from rodent biodistribution of (64)Cu-NOTA-FHT revealed favorable dosimetry profile. The findings from this investigation warrant further development of (64)Cu-NOTA-FHT as a potential targeted diagnostic radiopharmaceutical for PET imaging of aggressive tumor vasculature.


Asunto(s)
Radioisótopos de Cobre/química , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Péptidos/síntesis química , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Marcaje Isotópico , Ratones Endogámicos C57BL , Péptidos/química , Dosis de Radiación , Distribución Tisular , Tomografía Computarizada por Rayos X
14.
Development ; 142(22): 3921-32, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26450969

RESUMEN

Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Neoplasias Cerebelosas/fisiopatología , Cerebelo/crecimiento & desarrollo , Meduloblastoma/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Animales , Western Blotting , Proteínas de Unión a Calmodulina/genética , Daño del ADN/genética , Eliminación de Gen , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Mitosis/genética , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA