Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Phys Chem A ; 127(46): 9705-9716, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37939705

Solid-state photoreactions are generally controlled by the rigid and ordered nature of crystals. Herein, the solution and solid-state photoreactivities of carbonylbis(4,1-phenylene)dicarbonazidate (1) were investigated to elucidate the solid-state reaction mechanism. Irradiation of 1 in methanol yielded primarily the corresponding amine, whereas irradiation in the solid state gave a mixture of photoproducts. Laser flash photolysis in methanol showed the formation of the triplet ketone (TK) of 1 (τ ∼ 99 ns), which decayed to triplet nitrene 31N (τ ∼ 464 ns), as assigned by comparison to its calculated spectrum. Laser flash photolysis of a nanocrystalline suspension and diffuse reflectance laser flash photolysis also revealed the formation of TK of 1 (τ ∼ 106 ns) and 31N (τ ∼ 806 ns). Electron spin resonance spectroscopy and phosphorescence measurements further verified the formation of 31N and the TK of 1, respectively. In methanol, 31N decays by H atom abstraction. However, in the solid state, 31N is sufficiently long lived to thermally populate its singlet configuration (11N). Insertion of 11N into the phenyl ring to produce oxazolone competes with 31N cleavage to form a radical pair. Notably, 1 did not exhibit photodynamic behavior, likely because the photoreaction occurs only on the crystal surfaces.

2.
Org Lett ; 25(23): 4345-4349, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37273231

Irradiation of p-methoxyazidobutyrophenone (1) in methanol yielded 2-(4-methoxyphenyl)-1-pyrroline (2) and several other photoproducts. However, in the presence of tris(trimethylsilyl)silane (TTMSS), 2 is formed selectively. Transient absorption and ESR spectroscopy verify that the irradiation of 1 forms triplet alkylnitrene 31N through intramolecular energy transfer from the triplet ketone (T1K). DFT calculations indicate that 31N abstracts H atoms from TTMSS but not methanol, which explains the selectivity. Thus, triplet alkylnitrenes can undergo selective reductive cyclization via H atom abstraction from TTMSS.


Ketones , Cyclization , Ketones/chemistry , Energy Transfer
3.
J Phys Chem A ; 127(12): 2765-2778, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36926906

Excited-state intramolecular hydrogen transfer on the triplet surface of salicylideneaniline derivatives has received much less attention than the corresponding ultrafast process on the singlet surface. To enhance the understanding of this triplet reactivity, the photochemical properties of a series of salicylidene-α-hydroxy acid salts with different substituents on the phenol moiety (1-3) were characterized. UV/vis absorption and phosphorescence measurements in ethanol revealed that 1-3 exist as both enol and keto tautomers, with the enol form being predominant. Irradiation of 1 at 310 nm in ethanol glass (77 K) yielded an absorption band with a λmax at ∼405 nm, which was assigned to the trans-keto tautomer (trans-1K). In contrast, laser flash photolysis of 1-3 in methanol or acetonitrile resulted in a transient absorption with λmax at 440-460 nm. This transient, which decayed on the microsecond timescale and was significantly shorter lived in methanol than in acetonitrile, was assigned to the triplet excited state (T1) of the cis-keto tautomer (cis-1K-3K) and residual absorption of trans-1K-3K by comparison with TD-DFT calculations. The assignment of the T1 of cis-1K was further supported by quenching studies with anthracene and 2,5-dimethyl-2,4-hexadiene. Laser flash photolysis of 1 in the temperature range of 173-293 K gave an activation barrier of 6.7 kcal/mol for the decay of the T1 of cis-1K. In contrast, the calculated activation barrier for cis-1K to undergo a 1,5-H atom shift to reform 1 was smaller, indicating that intersystem crossing of the T1 of cis-1K is the rate-determining step in the regeneration of 1.

4.
Photochem Photobiol ; 99(2): 605-615, 2023 Mar.
Article En | MEDLINE | ID: mdl-35652751

Triplet arylnitrenes may provide direct access to aryl azo-dimers, which have broad commercial applicability. Herein, the photolysis of p-azidostilbene (1) in argon-saturated methanol yielded stilbene azo-dimer (2) through the dimerization of triplet p-nitrenostilbene (3 1N). The formation of 3 1N was verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2-methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of 1 in methanol formed 3 1N (λmax ~ 370 nm, 2.85 × 107 s-1 ). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s-1 ) was assigned to a triplet excited state (T) of 1. Density functional theory calculations yielded three configurations for T of 1, with the unpaired electrons on the azido (TA ) or stilbene moiety (TTw , twisted and TFl , flat). The transient was assigned to TTw based on its calculated spectrum. CASPT2 calculations gave a singlet-triplet energy gap of 16.6 kcal mol-1 for 1 N; thus, intersystem crossing of 1 1N to 3 1N is unlikely at ambient temperature, supporting the formation of 3 1N from T of 1. Thus, sustainable synthetic methods for aryl azo-dimers can be developed using the visible-light irradiation of aryl azides to form triplet arylnitrenes.

5.
J Phys Chem A ; 125(6): 1336-1344, 2021 02 18.
Article En | MEDLINE | ID: mdl-33534579

Herein we probe the effects of crystalline structure and geometry on benzophenone photophysics, self-quenching, and the regenerable formation of persistent triplet radical pairs at room temperature. Radical pairs are not observed in solution but appear via an emergent pathway within the solid-state assembly. Single crystal X-ray diffraction (SC-XRD) of two sets of constitutional isomers, benzophenone bis-urea macrocycles, and methylene urea-tethered dibenzophenones are compared. Upon irradiation with 365 nm light-emitting diodes (LEDs), each forms photogenerated radicals as monitored by electron paramagnetic resonance (EPR). Once generated, the radicals exhibit half-lives from 2 to 60 days before returning to starting material without degradation. Re-exposure to light regenerates the radicals with similar efficiency. Subtle differences in the structure of the crystalline frameworks modulates the maximum concentration of photogenerated radicals, phosphorescence quantum efficiency (φ), and n-type self-quenching as observed using laser flash photolysis (LFP). These studies along with the electronic structure analysis based on the time-dependent density functional theory (TD-DFT) suggest the microenvironment surrounding benzophenone largely dictates the favorability of self-quenching or radical formation and affords insights into structure/function correlations. Advances in understanding how structure determines the excited state pathway solid-state materials undertake will aid in the design of new radical initiators, components of OLEDs, and NMR polarizing agents.

6.
J Phys Chem A ; 124(37): 7346-7354, 2020 Sep 17.
Article En | MEDLINE | ID: mdl-32786978

To clarify the cis-trans isomerization mechanism of simple alkenes on the triplet excited state surface, the photochemistry of acyclic and cyclic vinyl ketones with a p-methoxyacetophenone moiety as a built-in triplet sensitizer (1 and 2, respectively) was compared. When irradiated, ketone 1 produces its cis-isomer, whereas ketone 2 does not yield any photoproducts. Laser flash photolysis of ketone 1 yields a transient spectrum with λmax ∼ 400 nm (τ ∼ 125 ns). This transient is assigned to the first triplet excited state (T1) of 1, which presumably decays to form a triplet biradical (1BR) that is shorter lived than the triplet ketone. In comparison, laser flash photolysis of 2 reveals two transients (τ ∼ 20 and 440 ns), which are assigned to T1 of 2 and triplet biradical 2BR, respectively. Density functional theory calculations support the characterization of the triplet excited states and the biradical intermediates formed upon irradiation of ketones 1 and 2 and allow a comparison of the physical properties of the biradical intermediates. As the biradical centers in 2BR are stabilized by conjugation, 2BR is more rigid than 1BR. Therefore, the longer lifetime of 2BR can be attributed to less-efficient intersystem crossing to the ground state.

...