Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Exp Dermatol ; 32(12): 2131-2137, 2023 12.
Article En | MEDLINE | ID: mdl-37846872

Laser-assisted drug delivery (LADD) is a treatment method to enhance the penetration of pharmaceuticals through the skin. The aim of the present study is to track hyaluronic acid (HA) and analyse its effect on human skin in vivo after ablative fractional laser (AFL) treatment. Healthy male and female subjects were recruited. Four areas were marked on their forearms of each volunteer, and each area was assigned to one of the following treatment options: AFL + HA, AFL only, HA only or untreated control. A carbon dioxide laser was used for the AFL treatment. Follow-up measurements were scheduled 30 min and 30 days after treatment using multiphoton tomography equipped with fluorescence lifetime imaging (MPT-FLIM). A total of 11 subjects completed the study. By detecting fluorescence lifetimes, the HA and the anaesthetic ointment were clearly distinguishable from surrounding tissue. After AFL treatment, HA could be visualized in all epidermal and upper dermal layers. In contrast, HA in intact skin was only detected in the superficial layers at distinctly lower levels. The applied HA gel seemed to have beneficial properties for the wound healing process after laser treatment. LADD has proven to be a fast and effective method to increase HA uptake into the skin, allowing for improved hydration and skin rejuvenation over time. Furthermore, LADD could be a beneficial treatment option in laser resurfacing. MPT-FLIM proved to be an appropriate diagnostic tool for drug delivery tracking and monitoring of treatment response for individualized therapy adjustment.


Hyaluronic Acid , Lasers, Gas , Humans , Male , Female , Hyaluronic Acid/pharmacology , Fluorescence , Skin/diagnostic imaging , Wound Healing , Lasers, Gas/therapeutic use
2.
J Immunother Cancer ; 11(5)2023 05.
Article En | MEDLINE | ID: mdl-37258039

BACKGROUND: An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI. METHODS: In a prospective cohort of 83 patients with metastatic melanoma, we measured the systemic levels of vWF-antigen (vWF:Ag), ADAMTS13 activity, D-dimers and platelets, before the beginning of the treatment (baseline), and 6, 12 and 24 weeks after. In parallel, we collected standard biological parameters used in clinical routine to monitor melanoma response (lactate deshydrogenase (LDH), S100). The impact of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) on overall survival (OS) in patients receiving ICI was assessed. Univariable and multivariable Cox proportional models were then used to investigate any potential association of these parameters to clinical progression (progression-free survival (PFS) and OS). Baseline values and variations over therapy course were compared between primary responders and resistant patients. RESULTS: Patients with melanoma present with dysregulated levels of vWF:Ag, ADAMTS13 activity, D-dimers, LDH, S100 and CRP at the beginning of treatment. With a median clinical follow-up of 26 months, vWF:Ag interrogated as a continuous variable was significantly associated with PFS in univariate and multivariate analysis (HR=1.04; p=0.007). Lower values of vWF:Ag at baseline were observed in the primary responders group (median: 29.4 µg/mL vs 32.9 µg/mL; p=0.048) when compared with primary resistant patients. As for OS, we found an association with D-dimers and ADAMTS13 activity in univariate analysis and vWF:Ag in univariate and multivariate analysis including v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation and Eastern Cooperative Oncology Group (ECOG) performance status. Follow-up over the course of treatment depicts different evolution profiles for vWF:Ag between the primary response and resistance groups. CONCLUSIONS: In this prospective cohort, coagulatory parameters such as ADAMTS13 activity and D-dimers are associated with OS but baseline vWF:Ag levels appeared as the only parameter associated with response and OS to ICI. This highlights a potential role of vWF as a biomarker to monitor ICI response of patients with malignant melanoma.


Melanoma , von Willebrand Factor , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/drug therapy , Prognosis , Prospective Studies , von Willebrand Factor/metabolism
4.
Cancers (Basel) ; 14(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36428768

Immune checkpoint inhibition (ICI) has yielded remarkable results in prolonging survival of metastatic melanoma patients but only a subset of individuals treated respond to therapy. Success of ICI treatment appears to depend on the number of tumor-infiltrating effector T-cells, which are known to be influenced by activated eosinophils. To verify the co-occurrence of activated eosinophils and T-cells in melanoma, immunofluorescence was performed in 285 primary or metastatic tumor tissue specimens from 118 patients. Moreover, eosinophil counts and activity markers such as eosinophil cationic protein (ECP) and eosinophil peroxidase (EPX) were measured in the serum before therapy start and before the 4th infusion of ICI in 45 metastatic unresected melanoma patients. We observed a positive correlation between increased tumor-infiltrating eosinophils and T-cells associated with delayed melanoma progression. High baseline levels of eosinophil count, serum ECP and EPX were linked to prolonged progression-free survival in metastatic melanoma. Our data provide first indications that activated eosinophils are related to the T-cell-inflamed tumor microenvironment and could be considered as potential future prognostic biomarkers in melanoma.

5.
BMJ Open ; 12(7): e060811, 2022 07 07.
Article En | MEDLINE | ID: mdl-35798519

INTRODUCTION: Chronic pruritus (CP) is a symptom of dermatologic, neurologic, systemic and psychosomatic diseases. CP has a prevalence of ~20% in the general population and is therefore a significant burden on society, but the transition from acute pruritus to CP is not well understood. It probably involves interactions between biological and psychosocial factors and pruritus-specific risk factors as well as mechanisms shared with other persistent somatic symptoms addressed in other projects of the SOMACROSS Research Unit (RU). Here we aim to identify psychosocial and biological factors and their interactions which might be associated with the persistence of CP with and without immunologic/inflammatory origin, that is, atopic dermatitis and pruritus on non-inflamed skin. We expect that psychosocial factors relevant to the persistence of symptoms such as fatigue and pain may also show associations to CP. METHODS AND ANALYSIS: In this prospective, exploratory observational study situated in Germany, three cohorts of 40 patients each with acute exacerbation of atopic dermatitis and chronic atopic dermatitis and 40 CP patients with unaffected skin will be recruited for a comprehensive translational investigation including pruritus-specific and the shared psychosocial assessments of the RU SOMACROSS. Pruritus-specific measures will include questionnaires, quantitative sensory testing, cutaneous nerve fibre morphology, skin barrier morphology, epidermal metabolism and pruritogen blood levels. Within 1 year, patients and 80 age-matched and sex-matched healthy controls will be examined at three time points, allowing cross-sectional comparison and a longitudinal investigation of predictive outcome factors in patients under treatment according to existing guidelines. ETHICS AND DISSEMINATION: The study has been approved by the ethics committees of Hamburg (2020-10200-BO-ff) and Münster (2020-676 f-S), Germany. All participants are required to provide written informed consent. Findings will be disseminated through peer-reviewed publications, scientific conferences and involvement of relevant stakeholders, patients and the lay public. TRIAL REGISTRATION NUMBER: DRKS00026646.


Dermatitis, Atopic , Cross-Sectional Studies , Dermatitis, Atopic/complications , Germany/epidemiology , Humans , Observational Studies as Topic , Prospective Studies , Pruritus/epidemiology
6.
Exp Dermatol ; 31(11): 1712-1719, 2022 11.
Article En | MEDLINE | ID: mdl-35837813

With increased popularity of decorative tattoos, awareness of tattoo-based dermatological complications has been raised. Health issues include a broad spectrum dominated by allergies and infections. To examine the etiopathology and prognose the outcome of an appropriate therapy, a non-invasive intravital diagnostic approach is indicated. The present pilot study introduces multiphoton tomography equipped with fluorescence lifetime imaging as a diagnostic technique to examine the morphological and metabolic status of tattooed human skin at patient's bedside. The distributing course of tattoo particles can be visualised over time. By providing optical biopsies, inflammation-based alterations in freshly tattooed skin and tattoo complications can be analysed. The study concludes that multiphoton tomography combined with fluorescence lifetime imaging is a suitable technique for in vivo visualisation of tattoo pigments as well as for the assessment of quantitative and qualitative skin changes after injection of tattoo ink into human skin.


Tattooing , Humans , Pilot Projects , Coloring Agents , Color , Ink , Tomography
7.
Front Immunol ; 13: 1078891, 2022.
Article En | MEDLINE | ID: mdl-36591269

Introduction: The intravascular formation of neutrophil extracellular traps (NETs) is a trigger for coagulation and blood vessel occlusion. NETs are released from neutrophils as a response to strong inflammatory signals in the course of different diseases such as COVID-19, cancer or antiphospholipid syndrome. NETs are composed of large, chromosomal DNA fibers decorated with a variety of proteins such as histones. Previous research suggested a close mechanistic crosstalk between NETs and the coagulation system involving the coagulation factor XII (FXII), von Willebrand factor (VWF) and tissue factor. However, the direct impact of NET-related DNA fibers on blood flow and blood aggregation independent of the coagulation cascade has remained elusive. Methods: In the present study, we used different microfluidic setups in combination with fluorescence microscopy to investigate the influence of neutrophil-derived extracellular DNA fibers on blood rheology, intravascular occlusion and activation of the complement system. Results: We found that extended DNA fiber networks decelerate blood flow and promote intravascular occlusion of blood vessels independent of the plasmatic coagulation. Associated with the DNA dependent occlusion of the flow channel was the strong activation of the complement system characterized by the production of complement component 5a (C5a). Vice versa, we detected that the local activation of the complement system at the vascular wall was a trigger for NET release. Discussion: In conclusion, we found that DNA fibers as the principal component of NETs are sufficient to induce blood aggregation even in the absence of the coagulation system. Moreover, we discovered that complement activation at the endothelial surface promoted NET formation. Our data envisions DNA degradation and complement inhibition as potential therapeutic strategies in NET-induced coagulopathies.


COVID-19 , Extracellular Traps , Humans , Extracellular Traps/metabolism , COVID-19/metabolism , Neutrophils/metabolism , DNA/metabolism , Complement Activation
8.
Thromb Haemost ; 122(2): 226-239, 2022 02.
Article En | MEDLINE | ID: mdl-33385180

The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target.


Gain of Function Mutation , Genetic Variation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , von Willebrand Factor/genetics , Gain of Function Mutation/genetics , Hemostasis , Humans , Platelet Aggregation , Protein Domains/genetics , von Willebrand Diseases/blood , von Willebrand Factor/metabolism
9.
Neurooncol Adv ; 3(1): vdab175, 2021.
Article En | MEDLINE | ID: mdl-34993481

BACKGROUND: The prognosis of patients with brain metastases (BM) is poor despite advances in our understanding of the underlying pathophysiology. The high incidence of thrombotic complications defines tumor progression and the high mortality rate. We, therefore, postulated that von Willebrand factor (VWF) promotes BM via its ability to induce platelet aggregation and thrombosis. METHODS: We measured the abundance of VWF in the blood and intravascular platelet aggregates of patients with BM, and determined the specific contribution of endothelial and platelet-derived VWF using in vitro models and microfluidics. The relevance for the brain metastatic cascade in vivo was demonstrated in ret transgenic mice, which spontaneously develop BM, and by the intracardiac injection of melanoma cells. RESULTS: Higher levels of plasma VWF in patients with BM were associated with enhanced intraluminal VWF fiber formation and platelet aggregation in the metastatic tissue and peritumoral regions. Platelet activation triggered the formation of VWF multimers, promoting platelet aggregation and activation, in turn enhancing tumor invasiveness. The absence of VWF in platelets, or the blocking of platelet activation, abolished platelet aggregation, and reduced tumor cell transmigration. Anticoagulation and platelet inhibition consistently reduced the number of BM in preclinical animal models. CONCLUSIONS: Our data indicate that platelet-derived VWF is involved in cerebral clot formation and in metastatic growth of melanoma in the brain. Targeting platelet activation with low-molecular-weight heparins represents a promising therapeutic approach to prevent melanoma BM.

10.
BMC Mol Cell Biol ; 21(1): 64, 2020 Sep 11.
Article En | MEDLINE | ID: mdl-32917131

BACKGROUND: It has been demonstrated that von Willebrand factor (VWF) mediated platelet-endothelium and platelet-platelet interactions are shear dependent. The VWF's mobility under dynamic conditions (e.g. flow) is pivotal to platelet adhesion and VWF-mediated aggregate formation in the cascade of VWF-platelet interactions in haemostasis. RESULTS: Combining microfluidic tools with fluorescence and reflection interference contrast microscopy (RICM), here we show, that specific deletions in the A-domains of the biopolymer VWF affect both, adhesion and aggregation properties independently. Intuitively, the deletion of the A1-domain led to a significant decrease in both adhesion and aggregate formation of platelets. Nevertheless, the deletion of the A2-domain revealed a completely different picture, with a significant increase in formation of rolling aggregates (gain of function). We predict that the A2-domain effectively 'masks' the potential between the platelet glycoprotein (GP) Ib and the VWF A1-domain. Furthermore, the deletion of the A3-domain led to no significant variation in either of the two functional characteristics. CONCLUSIONS: These data demonstrate that the macroscopic functional properties i.e. adhesion and aggregate formation cannot simply be assigned to the properties of one particular domain, but have to be explained by cooperative phenomena. The absence or presence of molecular entities likewise affects the properties (thermodynamic phenomenology) of its neighbours, therefore altering the macromolecular function.


Blood Platelets/metabolism , Blood Platelets/physiology , Platelet Adhesiveness/physiology , Platelet Aggregation/physiology , von Willebrand Factor/metabolism , Biopolymers/metabolism , Cell Line , Fluorescence , HEK293 Cells , Hemostasis/physiology , Humans , Microfluidics/methods , Microscopy/methods , Platelet Glycoprotein GPIb-IX Complex/metabolism
11.
Pharmaceutics ; 12(7)2020 Jul 20.
Article En | MEDLINE | ID: mdl-32698388

Although, drugs are required in the various skin compartments such as viable epidermis, dermis, or hair follicles, to efficiently treat skin diseases, drug delivery into and across the skin is still challenging. An improved understanding of skin barrier physiology is mandatory to optimize drug penetration and permeation. The various barriers of the skin have to be known in detail, which means methods are needed to measure their functionality and outside-in or inside-out passage of molecules through the various barriers. In this review, we summarize our current knowledge about mechanical barriers, i.e., stratum corneum and tight junctions, in interfollicular epidermis, hair follicles and glands. Furthermore, we discuss the barrier properties of the basement membrane and dermal blood vessels. Barrier alterations found in skin of patients with atopic dermatitis are described. Finally, we critically compare the up-to-date applicability of several physical, biochemical and microscopic methods such as transepidermal water loss, impedance spectroscopy, Raman spectroscopy, immunohistochemical stainings, optical coherence microscopy and multiphoton microscopy to distinctly address the different barriers and to measure permeation through these barriers in vitro and in vivo.

12.
PLoS One ; 15(5): e0232637, 2020.
Article En | MEDLINE | ID: mdl-32365113

ADAMTS13 regulates the hemostatic activity of von Willebrand factor (VWF). Determined by static assays, proteolytic activity <10IU/dL in patient plasma, in absence of ADAMTS13 autoantibodies, indicates Upshaw-Schulman syndrome (USS); the congenital form of Thrombotic Thrombocytopenic Purpura (TTP). We have recently functionally characterized sixteen USS-associated ADAMTS13 missense variants under static conditions. Here, we used two assays under shear flow conditions to analyze the activity of those seven mutants with sufficiently high residual secretion plus two newly identified variants. One assay determines cleavage of VWF strings bound to the surface of endothelial cells. The other, light transmission aggregometry-based assay, mimics degradation of VWF-platelet complexes, which are likely to be present in the circulation during TTP bouts. We found that 100 ng/ml of all variants were able to cleave about 80-90% of VWF strings even though 5 out of 9 exhibited activity ≤1% in the state-of-the-art static assay at the same concentration. These data indicate underestimation of ADAMTS13 activity by the used static assay. In simulated circulation, two variants, with missense mutations in the vicinity of the catalytic domain, exhibited only minor residual activity while all other variants were able to effectively break down VWF-platelet complexes. In both assays, significant proteolytic activity could be observed down to 100 ng/ml ADAMTS13. It is thus intriguing to postulate that most variants would have ample activity if secretion of 10% of normal plasma levels could be achieved.


ADAMTS13 Protein/genetics , Genetic Variation , Mutation, Missense , Purpura, Thrombotic Thrombocytopenic/congenital , Purpura, Thrombotic Thrombocytopenic/genetics , Blood Platelets/metabolism , Catalytic Domain , Codon, Nonsense , Endothelial Cells/metabolism , HEK293 Cells , Hemostasis , Humans , Platelet Aggregation , Recombinant Proteins/genetics , Shear Strength , Time Factors , von Willebrand Factor
13.
Sci Rep ; 8(1): 10945, 2018 Jul 19.
Article En | MEDLINE | ID: mdl-30026593

Microangiopathy with subsequent organ damage represents a major complication in several diseases. The mechanisms leading to microvascular occlusion include von Willebrand factor (VWF), notably the formation of ultra-large von Willebrand factor fibers (ULVWFs) and platelet aggregation. To date, the contribution of erythrocytes to vascular occlusion is incompletely clarified. We investigated the platelet-independent interaction between stressed erythrocytes and ULVWFs and its consequences for microcirculation and organ function under dynamic conditions. In response to shear stress, erythrocytes interacted strongly with VWF to initiate the formation of ULVWF/erythrocyte aggregates via the binding of Annexin V to the VWF A1 domain. VWF-erythrocyte adhesion was attenuated by heparin and the VWF-specific protease ADAMTS13. In an in vivo model of renal ischemia/reperfusion injury, erythrocytes adhered to capillaries of wild-type but not VWF-deficient mice and later resulted in less renal damage. In vivo imaging in mice confirmed the adhesion of stressed erythrocytes to the vessel wall. Moreover, enhanced eryptosis rates and increased VWF binding were detected in blood samples from patients with chronic renal failure. Our study demonstrates that stressed erythrocytes have a pronounced binding affinity to ULVWFs. The discovered mechanisms suggest that erythrocytes are essential for the pathogenesis of microangiopathies and renal damage by actively binding to ULVWFs.


Erythrocytes/cytology , Renal Insufficiency, Chronic/metabolism , Vascular Diseases/metabolism , von Willebrand Factor/metabolism , ADAMTS13 Protein/metabolism , Animals , Cell Adhesion , Disease Models, Animal , Erythrocytes/metabolism , Humans , Mice , Protein Domains , Shear Strength , Stress, Mechanical , von Willebrand Factor/chemistry
14.
Sci Rep ; 6: 22789, 2016 Mar 23.
Article En | MEDLINE | ID: mdl-27004454

The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients' bedsides. These 'optical biopsies' generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.


Dermatitis, Atopic/diagnostic imaging , Microscopy, Fluorescence, Multiphoton/methods , Skin/pathology , Tomography, Optical/methods , Algorithms , Biopsy , Cell Nucleus/metabolism , Cells, Cultured , Dermatitis, Atopic/metabolism , Humans , Keratinocytes/metabolism , Mitochondria/metabolism , Skin/cytology , Skin/metabolism
15.
J Clin Invest ; 124(6): 2683-95, 2014 Jun.
Article En | MEDLINE | ID: mdl-24812665

In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein-coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin-converting enzyme 1 (ECE-1) as a key regulator of ET-1-induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1-containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1-induced activation of ERK1/2, but not p38. In a murine itch model, ET-1-induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1-induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans.


Aspartic Acid Endopeptidases/metabolism , Endothelin-1/metabolism , Metalloendopeptidases/metabolism , Pruritus/etiology , Pruritus/metabolism , Adult , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/genetics , Endothelin-1/administration & dosage , Endothelin-1/genetics , Endothelin-Converting Enzymes , Female , Ganglia, Spinal/metabolism , Humans , MAP Kinase Signaling System , Male , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Pruritus/genetics , Receptor, Endothelin A/metabolism , Signal Transduction , Skin/innervation , Skin/metabolism , Skin/pathology , Up-Regulation
16.
J Investig Dermatol Symp Proc ; 15(1): 2-11, 2011 Dec.
Article En | MEDLINE | ID: mdl-22076321

Rosacea is a chronic inflammatory skin disease of unknown etiology. Although described centuries ago, the pathophysiology of this disease is still poorly understood. Epidemiological studies indicate a genetic component, but a rosacea gene has not been identified yet. Four subtypes and several variants of rosacea have been described. It is still unclear whether these subtypes represent a "developmental march" of different stages or are merely part of a syndrome that develops independently but overlaps clinically. Clinical and histopathological characteristics of rosacea make it a fascinating "human disease model" for learning about the connection between the cutaneous vascular, nervous, and immune systems. Innate immune mechanisms and dysregulation of the neurovascular system are involved in rosacea initiation and perpetuation, although the complex network of primary induction and secondary reaction of neuroimmune communication is still unclear. Later, rosacea may result in fibrotic facial changes, suggesting a strong connection between chronic inflammatory processes and skin fibrosis development. This review highlights recent molecular (gene array) and cellular findings and aims to integrate the different body defense mechanisms into a modern concept of rosacea pathophysiology.


Rosacea/pathology , Rosacea/physiopathology , Chronic Disease , Female , Fibrosis , Humans , Incidence , Male , Prevalence , Rosacea/immunology , Sex Factors , Vasodilation/physiology
17.
J Investig Dermatol Symp Proc ; 15(1): 53-62, 2011 Dec.
Article En | MEDLINE | ID: mdl-22076328

Rosacea is a common skin disease with a high impact on quality of life. Characterized by erythema, edema, burning pain, immune infiltration, and facial skin fibrosis, rosacea has all the characteristics of neurogenic inflammation, a condition induced by sensory nerves via antidromically released neuromediators. To investigate the hypothesis of a central role of neural interactions in the pathophysiology, we analyzed molecular and morphological characteristics in the different subtypes of rosacea by immunohistochemistry, double immunofluorescence, morphometry, real-time PCR, and gene array analysis, and compared the findings with those for lupus erythematosus or healthy skin. Our results showed significantly dilated blood and lymphatic vessels. Signs of angiogenesis were only evident in phymatous rosacea. The number of mast cells and fibroblasts was increased in rosacea, already in subtypes in which fibrosis is not clinically apparent, indicating early activation. Sensory nerves were closely associated with blood vessels and mast cells, and were increased in erythematous rosacea. Gene array studies and qRT-PCR confirmed upregulation of genes involved in vasoregulation and neurogenic inflammation. Thus, dysregulation of mediators and receptors implicated in neurovascular and neuroimmune communication may be crucial at early stages of rosacea. Drugs that function on neurovascular and/or neuroimmune communication may be beneficial for the treatment of rosacea.


Neurogenic Inflammation/immunology , Neurogenic Inflammation/physiopathology , Rosacea/immunology , Rosacea/physiopathology , Skin/innervation , Skin/physiopathology , Fibroblasts/immunology , Fibroblasts/physiology , Gene Expression Profiling , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/physiopathology , Lymphatic Vessels/immunology , Lymphatic Vessels/physiopathology , Mast Cells/immunology , Mast Cells/physiology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/physiopathology , Neurogenic Inflammation/genetics , Neurogenic Inflammation/pathology , Rosacea/genetics , Rosacea/pathology , Skin/blood supply , Skin/pathology , Up-Regulation , Vasodilation/genetics , Vasodilation/immunology , Vasodilation/physiology , Vimentin/analysis , Vimentin/immunology
...