Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931771

RESUMEN

Managing car parking systems is a complex process because multiple constraints must be considered; these include organizational and operational constraints. In this paper, a constraint optimization model for dynamic parking space allocation is introduced. An ad hoc algorithm is proposed, presented, and explained to achieve the goal of our proposed model. This paper makes research contributions by providing an intelligent prioritization mechanism, considering user schedule shifts and parking constraints, and assigning suitable parking slots based on a dynamic distribution. The proposed model is implemented to demonstrate the applicability of our approach. A benchmark is constructed based on well-defined metrics to validate our proposed model and the results achieved.

2.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139588

RESUMEN

Smart parking is an artificial intelligence-based solution to solve the challenges of inefficient utilization of parking slots, wasting time, congestion producing high CO2 emission levels, inflexible payment methods, and protecting parked vehicles from theft and vandalism. Nothing is worse than parking congestion caused by drivers looking for open spaces. This is common in large parking lots, underground garages, and multi-story car parks, where visibility is limited and signage can be confusing or difficult to read, so drivers have no idea where available parking spaces are. In this paper, a smart real-time parking management system has been introduced. The developed system can deal with the aforementioned challenges by providing dynamic allocation for parking slots while taking into consideration the overall parking situation, providing a mechanism for booking a specific parking slot by using our Artificial Intelligence (AI)-based application, and providing a mechanism to ensure that the car is parked in its correct place. For the sake of providing cost flexibility, we have provided two technical solutions with cost varying. The first solution is developed based on a motion sensor and the second solution is based on a range-finder sensor. A plate detection and recognition system has been used to detect the vehicle's license plate by capturing the image using an IoT device. The system will recognize the extracted English alphabet and Hindu-Arabic Numerals. The proposed solution was built and field-tested to prove the applicability of the proposed smart parking solution. We have measured and analyzed keen data such as vehicle plate detection accuracy, vehicle plate recognition accuracy, transmission delay time, and processing delay time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA