Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Theor Appl Genet ; 135(4): 1279-1292, 2022 Apr.
Article En | MEDLINE | ID: mdl-35275251

KEY MESSAGE: This manuscript describes the identification, isolation and sequencing of a single chromosome containing high value resistance genes from a complex polyploid where sequencing the whole genome is too costly. The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry; however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat, and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridization (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.


Polymorphism, Single Nucleotide , Saccharum , Crops, Agricultural/genetics , Genome, Plant , Karyotype , Polyploidy , Saccharum/genetics
2.
Mol Biol Evol ; 38(9): 3742-3753, 2021 08 23.
Article En | MEDLINE | ID: mdl-33950257

Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. Richness of the olfactory repertoire depends on the diversity of receptors coded by homologous genes classified into four families: OR, TAAR, VR1, and VR2. Herein, we focus on the OR gene repertoire. While independent large contractions of the OR gene repertoire associated with ecological transitions have been found in mammals, little is known about the diversity of the OR gene repertoire and its evolution in teleost fishes, a group that includes more than 34,000 living species. We analyzed genomes of 163 species representing diversity in this large group. We found a large range of variation in the number of functional OR genes, from 15 in the Broad-nose Pipefish Syngnathus typhle and the Ocean Sunfish Mola mola, to 429 in the Zig-zag Eel Mastacembelus armatus. The number of OR genes was higher in species when a multilamellar olfactory rosette was present. Moreover, the number of lamellae was correlated with the richness of the OR gene repertoire. While a slow and balanced birth-and-death process generally drives the evolution of the OR gene repertoire, we inferred several episodes of high rates of gene loss, sometimes followed by large gains in the number of OR genes. These gains coincide with morphological changes of the olfactory organ and suggest a strong functional association between changes in the morphology and the evolution of the OR gene repertoire.


Evolution, Molecular , Receptors, Odorant , Animals , Fishes/genetics , Humans , Mammals , Olfactory Mucosa , Phylogeny , Receptors, Odorant/genetics
3.
Sci Rep ; 9(1): 19362, 2019 12 18.
Article En | MEDLINE | ID: mdl-31852940

Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. Its highly polyploid, complex genome has hindered progress in understanding its molecular structure. Flow cytometric sorting and analysis has been used in other important crops with large genomes to dissect the genome into component chromosomes. Here we present for the first time a method to prepare suspensions of intact sugarcane chromosomes for flow cytometric analysis and sorting. Flow karyotypes were generated for two S. officinarum and three hybrid cultivars. Five main peaks were identified and each genotype had a distinct flow karyotype profile. The flow karyotypes of S. officinarum were sharper and with more discrete peaks than the hybrids, this difference is probably due to the double genome structure of the hybrids. Simple Sequence Repeat (SSR) markers were used to determine that at least one allelic copy of each of the 10 basic chromosomes could be found in each peak for every genotype, except R570, suggesting that the peaks may represent ancestral Saccharum sub genomes. The ability to flow sort Saccharum chromosomes will allow us to isolate and analyse chromosomes of interest and further examine the structure and evolution of the sugarcane genome.


Flow Cytometry/methods , Genome, Plant , Polyploidy , Saccharum/genetics , Alleles , Cell Cycle/drug effects , Cell Cycle/genetics , Chromosomes, Plant/genetics , DNA, Plant/metabolism , Fluorescence , Hydroxyurea/pharmacology , Karyotype , Kinetics , Plant Roots/drug effects , Saccharum/drug effects
4.
J Exp Bot ; 66(14): 4239-50, 2015 Jul.
Article En | MEDLINE | ID: mdl-26093024

Sugarcane is the main source of the world's sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum.


Genetic Markers , Mutagenesis, Insertional , Polymerase Chain Reaction/methods , Polymorphism, Genetic , Saccharum/genetics
5.
Mob DNA ; 5: 19, 2014.
Article En | MEDLINE | ID: mdl-25093042

BACKGROUND: Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. RESULTS: Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. CONCLUSIONS: The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate.

6.
Mol Phylogenet Evol ; 79: 404-14, 2014 Oct.
Article En | MEDLINE | ID: mdl-25050928

The genus Rivulus is currently comprised of two species, R. cylindraceus and R. insulaepinorum, which are endemic to Cuba. However, the taxonomic status of the latter species remains dubious because of the poor quality of the original description. In addition, a recent barcoding survey suggests that the two species may be conspecific. The aim of this study was to test the hypothesis that the two species represent a single evolutionary clade. To delimit the species and their evolutionary history, we used a combination of molecular phylogenetic analyses, with both mitochondrial and nuclear sequences, tests of phylogeographic hypotheses, combined with morphological measurements and information on known dispersal barriers and species distribution. None of the data sets support R. insulaepinorum and R. cylindraceus as separate taxa. However, a new species, restricted to the northwestern part of the main island, was identified by phylogenetic analyses, body colour pattern and geographical distribution. The evolutionary distance between the two lineages (cytb, d=15%; CAM-4, d=2.5%) indicates a long period of divergence. Phylogeographic analyses shed light on the dispersal history of R. cylindraceus, which probably originated on the Isla de la Juventud. They also suggest that each lineage had contrasting histories; Rivulus sp. is restricted to a relatively small geographic area whereas R. cylindraceus has dispersed considerably and more than once from its centre of origin, probably facilitated by sea level fluctuations. These results strengthen previous findings, i.e. that the diversity of Cuban freshwater fishes is far from well-known and deserves more in-depth studies, and that vicariance and dispersal events have resulted in a complex biogeographical landscape which has had a significant impact on the freshwater fishes of the Caribbean islands.


Cyprinodontiformes/classification , Genetic Speciation , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Cuba , Cyprinodontiformes/anatomy & histology , Cyprinodontiformes/genetics , DNA, Mitochondrial/genetics , Female , Genetic Variation , Haplotypes , Likelihood Functions , Male , Models, Genetic , Phylogeography , Pigmentation , Sequence Analysis, DNA
7.
PLoS One ; 9(5): e97099, 2014.
Article En | MEDLINE | ID: mdl-24849372

Full-length Del elements from ten angiosperm genomes, 5 monocot and 5 dicot, were retrieved and putative attachment (att) sites were identified. In the 2432 Del elements, two types of U5 att sites and a single conserved type of U3 att site were identified. Retroviral att sites confer specificity to the integration process, different att sites types therefore implies lineage specificity. While some features are common to all Del elements, CpG island patterns within the LTRs were particular to lineage specific clusters. All eudicot copies grouped into one single clade while the monocots harbour a more diverse collection of elements. Furthermore, full-length Del elements and truncated copies were unevenly distributed amongst chromosomes. Elements of Del lineage are organized in plants into three clusters and each cluster is composed of elements with distinct LTR features. Our results suggest that the Del lineage efficiently amplified in the monocots and that one branch is probably a newly emerging sub-lineage. Finally, sequences in all groups are under purifying selection. These results show the LTR region is dynamic and important in the evolution of LTR-retrotransposons, we speculate that it is a trigger for retrotransposon diversification.


CpG Islands , Genome, Plant , Magnoliopsida/genetics , Phylogeny , Retroelements , Base Composition , Base Sequence , Biological Evolution , Magnoliopsida/classification , Molecular Sequence Data , Retroviridae/genetics , Terminal Repeat Sequences
8.
PLoS One ; 8(6): e68182, 2013.
Article En | MEDLINE | ID: mdl-23840829

BACKGROUND: The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. RESULTS: The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. CONCLUSION: Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.


Conserved Sequence/genetics , Homeodomain Proteins/genetics , Jaw/embryology , Transcription Factors/genetics , Vertebrates/embryology , Vertebrates/genetics , Animal Fins/embryology , Animals , Brain/embryology , Branchial Region/embryology , Evolution, Molecular , Gene Duplication/genetics , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genome/genetics , Neural Crest/embryology , Phylogeny , RNA, Untranslated/genetics , Regulatory Sequences, Nucleic Acid/genetics , Sharks/embryology , Sharks/genetics , Zebrafish/embryology , Zebrafish/genetics
9.
Mob Genet Elements ; 3(2): e24775, 2013 Mar 01.
Article En | MEDLINE | ID: mdl-24616835

Very large genomes, that is, those above 20 Gb, are rare but widely distributed throughout the eukaryotes. They are found within the diatoms, dinoflagellates, metazoans and green plants, but so far have not been found in the excavates. There is a known positive correlation between genome size and the proportion of the genome composed of transposable elements (TEs). Very large genomes may therefore be expected to be almost entirely composed of TEs. Of the large genomes examined, in the angiosperms, gymnosperms and the dinoflagellates only a small portion of the genome was identified as TEs, most of these genomes were unidentified and may be novel or diverse TEs. In the salamanders and lungfish, 25 to 47% of the genome were identifiable retrotransposons, that is, TEs that copy themselves before insertion. However, the predominant class of TEs found in the lungfish was not the same as that found in the salamanders. The little data we have at the moment suggests therefore that the diversity and abundance of TEs is variable between taxa with large genomes, similar to patterns found in taxa with smaller genomes. Based on results from the human genome, we suggest that the 'missing' portion of the lungfish and salamander genomes are old, highly divergent, and therefore inactive copies of TEs. The data available indicate that, unlike plants with large genomes, neither the lungfish nor the salamanders show an increased risk of extinction. Based on a slow rate of DNA loss in salamanders it has been suggested that the large salamander genome is the result of run-away genome expansion involving genome size increases via TE proliferation associated with reduced recombination rate. We know of no studies on DNA loss or recombination rates in lungfish genomes, however a similar scenario could describe the process of genome expansion in the lungfish. A series of waves of TE transposition and sequence decay would describe the pattern of TE content seen in both the lungfish and the salamanders. The lungfish and salamanders, therefore, may accommodate their large load of TEs because these TEs have accumulated gradually over a long period of time and have been subject to inactivation and decay.

10.
Mol Biol Evol ; 29(11): 3529-39, 2012 Nov.
Article En | MEDLINE | ID: mdl-22734051

Haploid genomes greater than 25,000 Mb are rare, within the animals only the lungfish and some of the salamanders and crustaceans are known to have genomes this large. There is very little data on the structure of genomes this size. It is known, however, that for animal genomes up to 3,000 Mb, there is in general a good correlation between genome size and the percent of the genome composed of repetitive sequence and that this repetitive component is highly dynamic. In this study, we sampled the Australian lungfish genome using three mini-genomic libraries and found that with very little sequence, the results converged on an estimate of 40% of the genome being composed of recognizable transposable elements (TEs), chiefly from the CR1 and L2 long interspersed nuclear element clades. We further characterized the CR1 and L2 elements in the lungfish genome and show that although most CR1 elements probably represent recent amplifications, the L2 elements are more diverse and are more likely the result of a series of amplifications. We suggest that our sampling method has probably underestimated the recognizable TE content. However, on the basis of the most likely sources of error, we suggest that this very large genome is not largely composed of recently amplified, undetected TEs but may instead include a large component of older degenerate TEs. Based on these estimates, and on Thomson's (Thomson K. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J Exp Zool. 180:363-372) inference that in the lineage leading to the extant Australian lungfish, there was massive increase in genome size between 350 and 200 mya, after which the size of the genome changed little, we speculate that the very large Australian lungfish genome may be the result of a massive amplification of TEs followed by a long period with a very low rate of sequence removal and some ongoing TE activity.


Evolution, Molecular , Fishes/genetics , Genome/genetics , Long Interspersed Nucleotide Elements/genetics , Animals , Australia , Base Sequence , Computational Biology , Computer Simulation , Genome Size/genetics , Genome, Human/genetics , Humans , Likelihood Functions , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
11.
BMC Genomics ; 13: 137, 2012 Apr 16.
Article En | MEDLINE | ID: mdl-22507400

BACKGROUND: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. RESULTS: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. CONCLUSIONS: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.


Genomics , Retroelements/genetics , Saccharum/genetics , Terminal Repeat Sequences/genetics , Chromosomes, Artificial, Bacterial/genetics , Evolution, Molecular , Genetic Variation/genetics , Genome, Plant/genetics , Metaphase/genetics , Phylogeny , RNA, Plant/genetics , RNA, Untranslated/genetics , Saccharum/cytology , Transcription, Genetic/genetics
12.
Mol Phylogenet Evol ; 62(2): 640-52, 2012 Feb.
Article En | MEDLINE | ID: mdl-22122943

The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b, NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogalexanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n=22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia.


Biological Evolution , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Macropodidae/genetics , NADH Dehydrogenase/genetics , Phylogeny , Animals , Australia , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/classification , Genetic Speciation , Genetic Variation , Karyotyping , Macropodidae/classification , Phylogeography , Sequence Analysis, DNA
13.
Genetics ; 177(4): 2507-17, 2007 Dec.
Article En | MEDLINE | ID: mdl-18073443

Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.


Centromere , Chimera/genetics , Genomic Instability , Marsupialia/genetics , Animals , Chromatin Assembly and Disassembly , DNA Transposable Elements , Gene Rearrangement , Karyotyping , Species Specificity
...