Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
HGG Adv ; : 100309, 2024 May 14.
Article En | MEDLINE | ID: mdl-38751117

Analysis of genomic DNA methylation by generating epigenetic signature profiles ("episignatures") is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorder (NDD). We analysed 97 NDDs divided into: (i) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (ii) a test cohort of 38 patients harbouring variants of unknown significance (VUS) or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59; 90%), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including: (i) novel pathogenic variants in ARID1B and BRWD3; (ii) a deletion in ATRX causing MRXFH1 X-linked mental retardation and (iii) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days but with increasing utilization come increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.

2.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Article En | MEDLINE | ID: mdl-37964426

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Aniridia , Carbonic Anhydrases , Cerebellar Ataxia , Intellectual Disability , Movement Disorders , Spinocerebellar Degenerations , Humans , Cerebellar Ataxia/genetics , Mutation, Missense/genetics , Movement Disorders/complications , Atrophy , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Intracellular Signaling Peptides and Proteins/genetics
3.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Article En | MEDLINE | ID: mdl-37119330

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Spastic Paraplegia, Hereditary , Animals , Humans , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Zebrafish , Mutation , Motor Neurons , Receptors, Autocrine Motility Factor/genetics
4.
Reprod Biomed Online ; 45(4): 727-729, 2022 10.
Article En | MEDLINE | ID: mdl-35781182

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 13-year-old girl with primary amenorrhoea? DESIGN: A case report of a next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A homozygous missense variant c.1076C>T, p.(Pro359Leu) in BMP15 was identified. CONCLUSIONS: The biallelic variant c.1076C >T, p.(Pro359Leu) in BMP15 is associated with primary ovarian failure.


Bone Morphogenetic Protein 15/genetics , Primary Ovarian Insufficiency , Adolescent , Female , Homozygote , Humans , Mutation, Missense , Primary Ovarian Insufficiency/genetics
5.
Eur J Hum Genet ; 30(1): 95-100, 2022 01.
Article En | MEDLINE | ID: mdl-34645992

White-Sutton syndrome (WHSUS) is a neurodevelopmental disorder caused by heterozygous loss-of-function variants in POGZ. Through the Deciphering Developmental Disorders study and clinical testing, we identified 12 individuals from 10 families with pathogenic or likely pathogenic variants in POGZ (eight de novo and two inherited). Most individuals had delayed development and/or intellectual disability. We analyzed the clinical findings in our series and combined it with data from 89 previously reported individuals. The results demonstrate WHSUS is associated with variable developmental delay or intellectual disability, increased risk of obesity, visual defects, craniofacial dysmorphism, sensorineural hearing loss, feeding problems, seizures, and structural brain malformations. Our series includes further individuals with rod-cone dystrophy, cleft lip and palate, congenital diaphragmatic hernia, and duplicated renal drainage system, suggesting these are rare complications of WHSUS. In addition, we describe an individual with a novel, de novo missense variant in POGZ and features of WHSUS. Our work further delineates the phenotypic spectrum of WHSUS highlighting the variable severity of this disorder and the observation of familial pathogenic POGZ variants.


Abnormalities, Multiple/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Phenotype , Transposases/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/diagnosis , Female , Humans , Infant , Intellectual Disability/diagnosis , Male , Mutation, Missense , Pedigree , Syndrome
6.
Genet Med ; 24(1): 179-191, 2022 01.
Article En | MEDLINE | ID: mdl-34906456

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Intellectual Disability , Language Development Disorders , Musculoskeletal Abnormalities , Haploinsufficiency , Humans , Intellectual Disability/diagnosis , Language Development Disorders/genetics , Musculoskeletal Abnormalities/genetics , Phenotype
9.
NPJ Genom Med ; 6(1): 92, 2021 Nov 08.
Article En | MEDLINE | ID: mdl-34750377

TET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants. Validation and testing of the episignature correctly categorized known TET3 variants and determined pathogenicity of variants of uncertain significance. Clinical utility was demonstrated when the episignature alone identified an affected individual from over 1000 undiagnosed cases and was confirmed upon distinguishing TET3-deficient individuals from those with 46 other disorders. The TET3-deficient signature - and the signature resulting from activating mutations in DNMT1 which normally opposes TET3 - are characterized by hypermethylation, which for BEFAHRS involves CpG sites that may be biologically relevant. This work expands the role of epi-phenotyping in molecular diagnosis and reveals genome-wide DNA methylation profiling as a quantitative, functional readout for characterization of this new biochemical category of disease.

11.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Article En | MEDLINE | ID: mdl-33991472

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Collagen/metabolism , Cutis Laxa/etiology , Genetic Variation , Latent TGF-beta Binding Proteins/genetics , Adolescent , Alleles , Animals , Cells, Cultured , Child , Child, Preschool , Cutis Laxa/pathology , Extracellular Matrix/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Male , Pedigree , Skin/metabolism , Skin/pathology , Zebrafish
12.
Am J Hum Genet ; 108(1): 176-185, 2021 01 07.
Article En | MEDLINE | ID: mdl-33245860

Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.


Brain Diseases/genetics , Epilepsy/genetics , Fibroblast Growth Factors/genetics , Mutation, Missense/genetics , Protein Isoforms/genetics , Adolescent , Amino Acid Sequence , Child , Exons/genetics , Female , Gain of Function Mutation/genetics , Genes, X-Linked/genetics , Heterozygote , Humans , Male , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurons/physiology , Seizures/genetics
13.
Genet Med ; 22(11): 1838-1850, 2020 11.
Article En | MEDLINE | ID: mdl-32694869

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.


Blepharophimosis , Hypotrichosis , Intellectual Disability , Facies , Foot Deformities, Congenital , Humans , Intellectual Disability/genetics , Phenotype , Transcription Factors/genetics
15.
Genet Med ; 22(5): 878-888, 2020 05.
Article En | MEDLINE | ID: mdl-31949314

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Child , Female , GATA Transcription Factors/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Nucleosomes , Phenotype , Pregnancy , Repressor Proteins
16.
Eur J Med Genet ; 63(4): 103798, 2020 Apr.
Article En | MEDLINE | ID: mdl-31655143

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is an autosomal recessive condition characterized by distinct craniofacial features, multisystem congenital malformations and progressive fragility of connective tissues. It is caused by pathogenic variants in CHST14 and DSE genes. There are three reports of pathogenic variants in DSE in four mcEDS patients. In this study we provide clinical and molecular presentation of two new patients with DSE related mcEDS. Analysing clinical exome data, a homozygous pathogenic DSE variant, c.1150_1157del p.(Pro384Trpfs*9), was identified in a 32 year old man with bilateral congenital talipes equinovarus, characteristic facial features, myopia, hyperextensible skin at the elbows, significant palmar wrinkling, bilateral inguinal hernias and chronic leg, back and joint pain. Electron microscopical examination of skin biopsy showed changes consistent with mild compensatory elastic fibre hypertrophy and mildly loose collagen bundles. The variant is predicted to result in a frameshift and introduction of a premature termination codon in the final exon of the DSE gene, anticipated to lead to the loss of approximately 60% of the normal reading frame. The second patient has a phenotype consistent with previously reported cases of DSE associated musculocontractural EDS. A novel homozygous missense DSE variant of uncertain clinical significance was detected. This case study further delineates the DSE associated mcEDS phenotype and illustrates absence of major cutaneous, cardiovascular, renal and respiratory features, which supports previous suggestions that patients with DSE associated mcEDS present with a milder phenotype compared to those with CHST14 mutations.


Antigens, Neoplasm/genetics , Contracture/pathology , DNA-Binding Proteins/genetics , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/pathology , Mutation , Neoplasm Proteins/genetics , Adult , Biological Variation, Population , Contracture/genetics , Humans , Male , Phenotype
17.
Genet Med ; 22(2): 389-397, 2020 02.
Article En | MEDLINE | ID: mdl-31388190

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Chromatin Assembly and Disassembly/genetics , Developmental Disabilities/genetics , Female , Genetic Association Studies , Genotype , Hearing Loss/genetics , Heart Defects, Congenital/genetics , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Musculoskeletal Abnormalities/genetics , Mutation, Missense/genetics , Phenotype , Syndrome , Transcription Factors/genetics
19.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Article En | MEDLINE | ID: mdl-31721432

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Cadherins/genetics , Growth Disorders/genetics , Phenotype , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Intellectual Disability/genetics , Male , Syndrome , Young Adult
20.
Brain ; 142(11): 3382-3397, 2019 11 01.
Article En | MEDLINE | ID: mdl-31637422

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.


Phosphatidylethanolamines/biosynthesis , RNA Nucleotidyltransferases/genetics , Spastic Paraplegia, Hereditary/genetics , Adolescent , Alleles , Animals , Atrophy , Brain/pathology , Child , Child, Preschool , Developmental Disabilities/genetics , Epilepsy/genetics , Female , Gene Knockout Techniques , Genetic Variation , Humans , Lipidomics , Male , Mice , RNA Nucleotidyltransferases/deficiency , Young Adult , Zebrafish
...