Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Sci Rep ; 13(1): 18573, 2023 10 30.
Article En | MEDLINE | ID: mdl-37903789

The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored whether intrinsic differences between nasal and bronchial epithelial cells persist in cell cultures and affect epithelial cell functioning in CF. Comparison of air-liquid interface (ALI) differentiated epithelial cells from subjects with CF revealed distinct mucociliary differentiation states of nasal and bronchial cultures. Moreover, using RNA sequencing we identified cell type-specific signature transcription factors in differentiated nasal and bronchial epithelial cells, some of which were already poised for expression in basal progenitor cells as evidenced by ATAC sequencing. Analysis of differentiated nasal and bronchial epithelial 3D organoids revealed distinct capacities for fluid secretion, which was linked to differences in ciliated cell differentiation. In conclusion, we show that unique phenotypical and functional features of nasal and bronchial epithelial cells persist in cell culture models, which can be further used to investigate the effects of tissue-specific features on upper and lower respiratory disease development in CF.


Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cells, Cultured , Respiratory Mucosa/metabolism , Nose , Epithelial Cells/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
2.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Article En | MEDLINE | ID: mdl-37505242

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


COVID-19 , Humans , Proteolysis , Chemokine CXCL12/metabolism , Peptide Hydrolases , Lung/metabolism , Receptors, CXCR4 , Protein Processing, Post-Translational
3.
Med Res Rev ; 43(5): 1537-1606, 2023 09.
Article En | MEDLINE | ID: mdl-37036061

Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.


Anti-Infective Agents , Neoplasms , Humans , Neutrophils , Immunity, Innate , Adaptive Immunity , Inflammation
5.
Front Immunol ; 14: 1111465, 2023.
Article En | MEDLINE | ID: mdl-36793709

Introduction: Peptidylarginine deiminases (PADs) mediate citrullination, an irreversible posttranslational modification that converts arginine to citrulline residues in proteins. Rheumatoid arthritis (RA) is characterized by unique autoantibodies that recognize citrullinated peptides, which are highly specific for this disease. However, the mechanism preceding the anti-citrulline response remains largely unclear. PAD enzymes are known to fuel the autoimmune response by generating autoreactive epitopes, and sustain local synovial inflammation through neutrophil extracellular trap formation. Therefore, detecting endogenous PAD activity is important to understand the pathogenesis of arthritis. Methods: In this study, we improved a fluorescent in vitro assay to enable endogenous PAD activity characterization in complex samples. We combine the use of an in-house synthetic, arginine-rich substrate and a negatively charged dye molecule to visualize enzyme activity. Results: This pioneering PAD assay allowed profiling of active citrullination in leukocytes and in local and systemic samples of an arthritis cohort. Our results reveal that RA and juvenile idiopathic arthritis (JIA) synovial fluids display similar levels of PAD activity. In contrast, citrullination was limited in joints of patients suffering from gout or Lyme's disease. Interestingly, in blood, a higher level of extracellular citrullination was only found in anti-CCP-positive RA patients. Discussion: Our finding suggests that enhanced synovial PAD activity drives the loss in tolerance towards citrullinated proteins and that systemic citrullination may indicate the risk for developing citrulline-specific autoimmunity.


Arthritis, Juvenile , Arthritis, Rheumatoid , Humans , Citrullination , Hydrolases/genetics , Protein-Arginine Deiminases/metabolism , Proteins/metabolism , Citrulline/metabolism , Arginine/metabolism
6.
Front Immunol ; 13: 820058, 2022.
Article En | MEDLINE | ID: mdl-35222394

Neutrophils are the most abundant leukocytes in human blood and the first cells responding to infection and injury. Due to their limited ex vivo lifespan and the impossibility to cryopreserve or expand them in vitro, neutrophils need to be purified from fresh blood for immediate use in experiments. Importantly, neutrophil purification methods may artificially modify the phenotype and functional characteristics of the isolated cells. The aim of this study was to expose the effects of 'classical' density-gradient purification versus the more expensive but faster immunomagnetic isolation on neutrophil phenotype and functionality. We found that in the absence of inflammatory stimuli, density-gradient-derived neutrophils showed increased polarization responses as well as enhanced release of reactive oxygen species (ROS), neutrophil extracellular traps (NETs) and granular proteins compared to cells derived from immunomagnetic isolation, which yields mostly quiescent neutrophils. Upon exposure to pro-inflammatory mediators, immunomagnetic isolation-derived neutrophils were significantly more responsive in polarization, ROS production, phagocytosis, NETosis and degranulation assays, in comparison to density-gradient-derived cells. We found no difference in chemotactic response in Multiscreen and under-agarose migration assays, but Boyden assays showed reduced chemotaxis of immunomagnetic isolation-derived neutrophils. Finally, we confirmed that density-gradient purification induces artificial activation of neutrophils, evidenced by e.g. higher expression of CD66b, formyl peptide receptor 1 (FPR1) and CD35, and the appearance of a separate neutrophil population expressing surface molecules atypical for neutrophils (e.g. CXCR3, MHC-II and CD14). Based on these results, we recommend using immunomagnetic separation of neutrophils for studying neutrophil polarization, phagocytosis, ROS production, degranulation and NETosis, whereas for Boyden chemotaxis assays, the density-gradient purification is more suitable.


Extracellular Traps , Neutrophils , Extracellular Traps/metabolism , Neutrophils/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Technology
7.
Clin Transl Immunology ; 11(2): e1370, 2022.
Article En | MEDLINE | ID: mdl-35140938

OBJECTIVES: Renal fibrosis accompanies all chronic kidney disorders, ultimately leading to end-stage kidney disease and the need for dialysis or even renal replacement. As such, renal fibrosis poses a major threat to global health and the search for effective therapeutic strategies to prevent or treat fibrosis is highly needed. We evaluated the applicability of a highly positively charged human peptide derived from the COOH-terminal domain of the chemokine CXCL9, namely CXCL9(74-103), for therapeutic intervention. Because of its high density of net positive charges at physiological pH, CXCL9(74-103) competes with full-length chemokines for glycosaminoglycan (GAG) binding. Consequently, CXCL9(74-103) prevents recruitment of inflammatory leucocytes to sites of inflammation. METHODS: CXCL9(74-103) was chemically synthesised and tested in vitro for anti-fibrotic properties on human fibroblasts and in vivo in the unilateral ureteral obstruction (UUO) mouse model. RESULTS: CXCL9(74-103) significantly reduced the mRNA and/or protein expression of connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA) and collagen III by transforming growth factor (TGF)-ß1-stimulated human fibroblasts. In addition, administration of CXCL9(74-103) inhibited fibroblast migration towards platelet-derived growth factor (PDGF), without affecting cell viability. In the UUO model, CXCL9(74-103) treatment significantly decreased renal α-SMA, vimentin, and fibronectin mRNA and protein expression. Compared with vehicle, CXCL9(74-103) attenuated mRNA expression of TGF-ß1 and the inflammatory markers/mediators MMP-9, F4/80, CCL2, IL-6 and TNF-α. Finally, CXCL9(74-103) treatment resulted in reduced influx of leucocytes in the UUO model and preserved tubular morphology. The anti-fibrotic and anti-inflammatory effects of CXCL9(74-103) were mediated by competition with chemokines and growth factors for GAG binding. CONCLUSIONS: Our findings provide a scientific rationale for targeting GAG-protein interactions in renal fibrotic disease.

8.
JCI Insight ; 7(1)2022 01 11.
Article En | MEDLINE | ID: mdl-34793331

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort. Compared with those of patients with influenza, BAL fluids of patients with COVID-19 contained increased numbers of hyperactivated degranulating neutrophils and elevated concentrations of the cytokines IL-1ß, IL-1RA, IL-17A, TNF-α, and G-CSF; the chemokines CCL7, CXCL1, CXCL8, CXCL11, and CXCL12α; and the protease inhibitors elafin, secretory leukocyte protease inhibitor, and tissue inhibitor of metalloproteinases 1. In contrast, α-1 antitrypsin levels and net proteolytic activity were comparable in COVID-19 and influenza BAL fluids. During antibiotic treatment for bacterial coinfections, increased BAL fluid levels of several activating and chemotactic factors for monocytes, lymphocytes, and NK cells were detected in patients with COVID-19 whereas concentrations tended to decrease in patients with influenza, highlighting the persistent immunological response to coinfections in COVID-19. Finally, the high proteolytic activity in COVID-19 lungs suggests considering protease inhibitors as a treatment option.


Bacterial Infections , Bronchoalveolar Lavage Fluid , COVID-19 , Coinfection , Influenza, Human , Adult , Aged , Bacterial Infections/complications , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Coinfection/immunology , Coinfection/metabolism , Coinfection/pathology , Cytokines/analysis , Female , Humans , Inflammation , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/immunology , Influenza, Human/pathology , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Middle Aged
9.
Front Immunol ; 12: 766620, 2021.
Article En | MEDLINE | ID: mdl-34966386

Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.


Arthritis, Juvenile/immunology , Granulocytes/immunology , Homeostasis/immunology , Leukopoiesis/immunology , Neutrophils/immunology , Bone Marrow/immunology , Bone Marrow/metabolism , Cytokines/immunology , Cytokines/metabolism , Granulocytes/cytology , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Inflammation/immunology , Inflammation/metabolism , Neutrophils/cytology
10.
BMC Ecol Evol ; 21(1): 182, 2021 09 26.
Article En | MEDLINE | ID: mdl-34565329

BACKGROUND: Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. RESULTS: Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to 'odorant binding proteins' (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog's genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. CONCLUSIONS: Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest.


Anal Sacs , Dogs , Odorants , Animals , Carrier Proteins , Female , Mammals/genetics , Proteomics
11.
Front Immunol ; 12: 701739, 2021.
Article En | MEDLINE | ID: mdl-34276694

Interleukin 7 (IL-7) is a cell growth factor with a central role in normal T cell development, survival and differentiation. The lack of IL-7-IL-7 receptor(R)-mediated signaling compromises lymphoid development, whereas increased signaling activity contributes to the development of chronic inflammation, cancer and autoimmunity. Gain-of-function alterations of the IL-7R and the signaling through Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) are enriched in T cell acute lymphoblastic leukemia (T-ALL) and autocrine production of IL-7 by T-ALL cells is involved in the phenotypes of leukemic initiation and oncogenic spreading. Several IL-7-associated pathologies are also characterized by increased presence of matrix metalloproteinase-9 (MMP-9), due to neutrophil degranulation and its regulated production by other cell types. Since proteases secreted by neutrophils are known to modulate the activity of many cytokines, we investigated the interactions between IL-7, MMP-9 and several other neutrophil-derived proteases. We demonstrated that MMP-9 efficiently cleaved human IL-7 in the exposed loop between the α-helices C and D and that this process is delayed by IL-7 N-linked glycosylation. Functionally, the proteolytic cleavage of IL-7 did not influence IL-7Rα binding and internalization nor the direct pro-proliferative effects of IL-7 on a T-ALL cell line (HPB-ALL) or in primary CD8+ human peripheral blood mononuclear cells. A comparable effect was observed for the neutrophil serine proteases neutrophil elastase, proteinase 3 and combinations of neutrophil proteases. Hence, glycosylation and disulfide bonding as two posttranslational modifications influence IL-7 bioavailability in the human species: glycosylation protects against proteolysis, whereas internal cysteine bridging under physiological redox state keeps the IL-7 conformations as active proteoforms. Finally, we showed that mouse IL-7 does not contain the protease-sensitive loop and, consequently, was not cleaved by MMP-9. With the latter finding we discovered differences in IL-7 biology between the human and mouse species.


Interleukin-7/metabolism , Matrix Metalloproteinase 9/metabolism , Neutrophils/metabolism , Serine Proteases/metabolism , Cell Line , Cell Line, Tumor , Cytokines/metabolism , Glycosylation , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Neutrophil Activation/physiology , Proteolysis
12.
Clin Transl Immunology ; 10(4): e1271, 2021.
Article En | MEDLINE | ID: mdl-33968405

OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Co-culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) allowed us to investigate viral replication in neutrophils. RESULTS: Upon ICU admission, patients displayed high plasma concentrations of granulocyte-colony-stimulating factor (G-CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10-, immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and non-metalloproteinase-derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVID-19 neutrophils were hyper-responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARS-CoV-2 failed to replicate inside human neutrophils. CONCLUSION: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVID-19 patients, and supports the concept of an increased neutrophil activation state in the circulation.

13.
Front Immunol ; 12: 644725, 2021.
Article En | MEDLINE | ID: mdl-33777041

With ELISAs one detects the ensemble of immunoreactive molecules in biological samples. For biomolecules undergoing proteolysis for activation, potentiation or inhibition, other techniques are necessary to study biology. Here we develop methodology that combines immunosorbent sample preparation and nano-scale liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) for proteoform analysis (ISTAMPA) and apply this to the aglycosyl chemokine CXCL8. CXCL8, the most powerful human chemokine with neutrophil chemotactic and -activating properties, occurs in different NH2-terminal proteoforms due to its susceptibility to site-specific proteolytic modification. Specific proteoforms display up to 30-fold enhanced activity. The immunosorbent ion trap top-down mass spectrometry-based approach for proteoform analysis allows for simultaneous detection and quantification of full-length CXCL8(1-77), elongated CXCL8(-2-77) and all naturally occurring truncated CXCL8 forms in biological samples. For the first time we demonstrate site-specific proteolytic activation of CXCL8 in synovial fluids from patients with chronic joint inflammation and address the importance of sample collection and processing.


Arthritis/metabolism , Interleukin-8/metabolism , Proteomics , Synovial Fluid/metabolism , Tandem Mass Spectrometry , Arthritis/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Interleukin-8/immunology , Male , Synovial Fluid/immunology
14.
J Clin Immunol ; 41(5): 1072-1084, 2021 07.
Article En | MEDLINE | ID: mdl-33666778

PURPOSE: Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) are clinically distinct autoinflammatory disorders caused by mutations in the pyrin-encoding gene MEFV. We investigated the transcriptional, phenotypical, and functional characteristics of patient neutrophils to explore their potential role in FMF and PAAND pathophysiology. METHODS: RNA sequencing was performed to discover transcriptional aberrancies. The phenotypical features, degranulation properties, and phagocytic capacity of neutrophils were assessed by flow cytometry. Production of reactive oxygen species (ROS), myeloperoxidase (MPO) release, and chemotactic responses were investigated via chemiluminescence, ELISA, and Boyden chamber assays, respectively. RESULTS: Neutrophils from PAAND and FMF patients showed a partially overlapping, activated gene expression profile with increased expression of S100A8, S100A9, S100A12, IL-4R, CD48, F5, MMP9, and NFKB. Increased MMP9 and S100A8/A9 expression levels were accompanied by high plasma concentrations of the encoded proteins. Phenotypical analysis revealed that neutrophils from FMF patients exhibited an immature character with downregulation of chemoattractant receptors CXCR2, C5aR, and BLTR1 and increased expression of Toll-like receptor 4 (TLR4) and TLR9. PAAND neutrophils displayed an increased random, but reduced CXCL8-induced migration. A tendency for enhanced random migration was observed for FMF neutrophils. PAAND neutrophils showed a moderately but significantly enhanced phagocytic activity as opposed to neutrophils from FMF patients. Neutrophils from both patient groups showed increased MPO release and ROS production. CONCLUSIONS: Neutrophils from patients with FMF and PAAND, carrying different mutations in the MEFV gene, share a pro-inflammatory phenotype yet demonstrate diverse features, underscoring the distinction between both diseases.


Familial Mediterranean Fever , Inflammation , Neutrophils/immunology , Pyrin/genetics , Skin Diseases , Adult , Aged , Calgranulin A/blood , Calgranulin B/blood , Cytokines/blood , Familial Mediterranean Fever/blood , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/immunology , Female , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/immunology , Male , Matrix Metalloproteinase 9/blood , Middle Aged , Peroxidase/immunology , Phagocytosis , Phenotype , Skin Diseases/blood , Skin Diseases/genetics , Skin Diseases/immunology , Transcriptome , Young Adult
15.
Sci Signal ; 14(673)2021 03 09.
Article En | MEDLINE | ID: mdl-33688078

The inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1-78), truncated CXCL5 [CXCL5(9-78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and ß-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.


Chemokine CXCL5 , Monocytes , Neutrophils , Animals , Chemokine CXCL5/genetics , Chemotactic Factors , Humans , Interleukin-8 , Mice , Receptors, Interleukin-8A/genetics , THP-1 Cells
16.
Arthritis Rheumatol ; 73(5): 875-884, 2021 05.
Article En | MEDLINE | ID: mdl-33264510

OBJECTIVE: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in childhood. The predominant subtypes, oligoarticular and polyarticular JIA, are traditionally considered to be autoimmune diseases with a central role for T cells and autoantibodies. Mounting evidence suggests an important role for neutrophils in JIA pathogenesis. We undertook this study to investigate the phenotypic features of neutrophils present in the blood and inflamed joints of patients. METHODS: JIA synovial fluid (SF) and parallel blood samples from JIA patients and healthy children were collected. SF-treated neutrophils from healthy donors and pleural neutrophils from patients with pleural effusion were investigated as controls for SF exposure and extravasation. Multicolor flow cytometry panels allowed for in-depth phenotypic analysis of neutrophils, focusing on the expression of adhesion molecules, activation, and maturation markers and chemoattractant receptors. Multiplex technology was used to quantify cytokines in plasma and SF. RESULTS: SF neutrophils displayed an activated, hypersegmented phenotype with decreased CD62L expression, up-regulation of adhesion molecules CD66b, CD11b, and CD15, and down-regulation of CXCR1/2. An elevated percentage of CXCR4-positive neutrophils was detected in SF from patients. Pleural neutrophils showed less pronounced maturation differences. Strikingly, significant percentages of SF neutrophils showed a profound up-regulation of atypical neutrophil markers, including CXCR3, intercellular adhesion molecule 1, and HLA-DR. CONCLUSION: Our data show that neutrophils in inflamed joints of JIA patients have an activated phenotype. This detailed molecular analysis supports the notion that a complex intertwining between these innate immune cells and adaptive immune events drives JIA.


Arthritis, Juvenile/immunology , Neutrophil Activation/immunology , Neutrophils/immunology , Receptors, CXCR3/immunology , Receptors, Interleukin-8A/immunology , Receptors, Interleukin-8B/immunology , Synovial Fluid/cytology , Adaptive Immunity/immunology , Adolescent , Antigens, CD/metabolism , Arthritis, Juvenile/metabolism , CD11b Antigen/metabolism , Cell Adhesion , Cell Adhesion Molecules/metabolism , Child , Child, Preschool , Down-Regulation , Female , Flow Cytometry , GPI-Linked Proteins/metabolism , HLA-DR Antigens/immunology , Humans , Immunity, Innate/immunology , Immunophenotyping , Intercellular Adhesion Molecule-1/metabolism , L-Selectin/immunology , Lewis X Antigen/metabolism , Male , Neutrophils/metabolism , Pleural Effusion , Up-Regulation
17.
Front Immunol ; 11: 561404, 2020.
Article En | MEDLINE | ID: mdl-33123134

Reflecting their importance in immunity, the activity of chemokines is regulated on several levels, including tissue and context-specific expression and availability of their cognate receptor on target cells. Chemokine synergism, affecting both chemokine and chemokine receptor function, has emerged as an additional control mechanism. We previously demonstrated that CXCL14 is a positive allosteric modulator of CXCR4 in its ability to synergize with CXCL12 in diverse cellular responses. Here, we have extended our study to additional homeostatic, as well as a selection of inflammatory chemokine systems. We report that CXCL14 strongly synergizes with low (sub-active) concentrations of CXCL13 and CCL19/CCL21 in in vitro chemotaxis with immune cells expressing the corresponding receptors CXCR5 and CCR7, respectively. CXCL14 by itself was inactive, not only on cells expressing CXCR5 or CCR7 but also on cells expressing any other known conventional or atypical chemokine receptor, as assessed by chemotaxis and/or ß-arrestin recruitment assays. Furthermore, synergistic migration responses between CXCL14 and inflammatory chemokines CXCL10/CXCL11 and CCL5, targeting CXCR3 and CCR5, respectively, were marginal and occasional synergistic Ca2+ flux responses were observed. CXCL14 bound to 300-19 cells and interfered with CCL19 binding to CCR7-expressing cells, suggesting that these cellular interactions contributed to the reported CXCL14-mediated synergistic activities. We propose a model whereby tissue-expressed CXCL14 contributes to cell localization under steady-state conditions at sites with prominent expression of homeostatic chemokines.


Chemokines, CXC/metabolism , Chemotaxis/immunology , Homeostasis/immunology , Receptors, CCR7/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR5/metabolism , Signal Transduction/immunology , Blood Donors , Calcium/metabolism , Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Chemokine CXCL13/metabolism , Chemotaxis/genetics , HEK293 Cells , Homeostasis/genetics , Humans , Protein Binding , Receptors, CCR7/genetics , Receptors, CXCR4/genetics , Receptors, CXCR5/genetics , Signal Transduction/genetics , T-Lymphocytes/immunology , Transfection , beta-Arrestin 2/metabolism
18.
J Leukoc Biol ; 107(6): 1167-1173, 2020 06.
Article En | MEDLINE | ID: mdl-32272490

CXCL8 is the principal human neutrophil-attracting chemokine and a major mediator of inflammation. The chemokine exerts its neutrophil-chemotactic and neutrophil-activating activities via interaction with glycosaminoglycans (GAGs) and activation of the G protein-coupled receptors (GPCRs) CXCR1 and CXCR2. Natural CXCL8 displays an exceptional degree of amino (NH2 )-terminal heterogeneity. Most CXCL8 forms result from proteolytic processing of authentic CXCL8(1-77). Here, we compared the potencies to activate and recruit neutrophils of the 3 most abundant natural CXCL8 forms: full-length 77 amino acid CXCL8 and the 2 major natural truncated forms lacking 5 or 8 NH2 -terminal amino acids. NH2 -terminal truncation hardly affected the capacity of CXCL8 to induce shedding of CD62L or to up-regulate the expression of the adhesion molecules CD11a, CD11b, or CD15 on human neutrophils. In addition, the potency of CXCL8 to induce neutrophil degranulation and its effect on phagocytosis remained unaltered upon removal of 5 or 8 NH2 -terminal residues. However, NH2 -terminal truncation strongly potentiated CXCL8-induced actin polymerization. CXCL8(6-77) and CXCL8(9-77) showed a comparable capacity to induce Ca2+ signaling in human neutrophils and to direct in vitro neutrophil migration. Strikingly, the ability of CXCL8(9-77) to recruit neutrophils into the peritoneal cavity of mice was significantly enhanced compared to CXCL8(6-77). These results suggest that NH2 -terminal truncation influences specific biological activities of CXCL8 and indicate that CXCL8(9-77) may be the most potent neutrophil-attracting CXCL8 form in vivo.


Actins/genetics , Base Sequence , Interleukin-8/genetics , Neutrophils/metabolism , Protein Processing, Post-Translational/immunology , Sequence Deletion , Actins/immunology , Animals , CD11a Antigen/genetics , CD11a Antigen/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Movement/drug effects , Cell Movement/immunology , Chemotaxis, Leukocyte , Female , Gene Expression Regulation , Glycosaminoglycans , Humans , Interleukin-8/immunology , Interleukin-8/pharmacology , Lewis X Antigen/genetics , Lewis X Antigen/immunology , Mice , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/immunology , Polymerization , Primary Cell Culture , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/immunology , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology
19.
J Allergy Clin Immunol ; 146(5): 1180-1193, 2020 11.
Article En | MEDLINE | ID: mdl-32325141

BACKGROUND: The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease. OBJECTIVE: Our aim was to expand the spectrum of SEC61A1-mediated disease to include autosomal dominant SCN. METHODS: Whole exome sequencing findings were validated, and reported mutations were compared by Western blotting, Ca2+ flux assays, differentiation of transduced HL-60 cells, in vitro differentiation of primary CD34 cells, quantitative PCR for unfolded protein response (UPR) genes, and single-cell RNA sequencing on whole bone marrow. RESULTS: We identified a novel de novo missense mutation in SEC61A1 (c.A275G;p.Q92R) in a patient with SCN who was born to nonconsanguineous Belgian parents. The mutation results in diminished protein expression, disturbed protein translocation, and an increase in calcium leakage from the endoplasmic reticulum. In vitro differentiation of CD34+ cells recapitulated the patient's clinical arrest in granulopoiesis. The impact of Q92R-Sec61α1 on neutrophil maturation was validated by using HL-60 cells, in which transduction reduced differentiation into CD11b+CD16+ cells. A potential mechanism for this defect is the uncontrolled initiation of the unfolded protein stress response, with single-cell analysis of primary bone marrow revealing perturbed UPR in myeloid precursors and in vitro differentiation of primary CD34+ cells revealing upregulation of CCAAT/enhancer-binding protein homologous protein and immunoglobulin heavy chain binding protein UPR-response genes. CONCLUSION: Specific mutations in SEC61A1 cause SCN through dysregulation of the UPR.


Congenital Bone Marrow Failure Syndromes/genetics , Mutation/genetics , Neutropenia/congenital , Neutrophils/physiology , SEC Translocation Channels/genetics , Antigens, CD34/metabolism , Chromosome Disorders , Female , Genes, Dominant , HL-60 Cells , Humans , Neutropenia/genetics , Pedigree , Single-Cell Analysis , Unfolded Protein Response/genetics , Exome Sequencing , Young Adult
20.
Cell Mol Immunol ; 17(5): 433-450, 2020 05.
Article En | MEDLINE | ID: mdl-32238918

Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.


Chemotactic Factors/pharmacology , Disease , Health , Neutrophils/cytology , Receptors, Formyl Peptide/metabolism , Animals , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Signal Transduction/drug effects
...