Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Mol Cancer Ther ; 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38442920

Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer PDTX models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using WES. PDTX 3-D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6 inhibitor. This combination was evaluated in PDTX 3-D spheroids and in vivo experiments with responses measured by tumor volumes, PSA and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, while tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in mCRPC patients whose tumor expresses wild type RB1.

2.
Blood Cancer Discov ; 5(1): 34-55, 2024 01 08.
Article En | MEDLINE | ID: mdl-37767768

Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiD). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: These results highlight the dependence of MM on IKZF1-bound super-enhancers, which can be effectively targeted by a potent therapeutic combination pairing IMiD-mediated degradation of IKZF1 and IKZF3 with EP300 inhibition. They also identify AP-1 factors as an unrecognized mechanism of IMiD resistance in MM. See related article by Neri, Barwick, et al., p. 56. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Transcription Factor AP-1/therapeutic use , Drug Combinations , Immunomodulating Agents
3.
Cancers (Basel) ; 15(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37568667

Bromodomains (BD) are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation of several genes including protooncogene cellular myelocytomatosis (c-Myc). c-Myc is difficult to target directly by agents due to its disordered alpha helical protein structure and predominant nuclear localization. The epigenetic targeting of c-Myc by BD inhibitors is an attractive therapeutic strategy for prostate cancer (PC) associated with increased c-Myc upregulation with advancing disease. MT-1 is a bivalent BD inhibitor that is 100-fold more potent than the first-in-class BD inhibitor JQ1. MT-1 decreased cell viability and causes cell cycle arrest in G0/G1 phase in castration-sensitive and resistant PC cell lines in a dose-dependent fashion. The inhibition of c-Myc function by MT-1 was molecularly corroborated by the de-repression of Protein Kinase D1 (PrKD) and increased phosphorylation of PrKD substrate proteins: threonine 120, serine 11, and serine 216 amino acid residues in ß-Catenin, snail, and cell division cycle 25c (CDC25c) proteins, respectively. The treatment of 3D cell cultures derived from three unique clinically annotated heavily pretreated patient-derived PC xenografts (PDX) mice models with increasing doses of MT-1 demonstrated the lowest IC50 in tumors with c-Myc amplification and clinically resistant to Docetaxel, Cabazitaxel, Abiraterone, and Enzalutamide. An intraperitoneal injection of either MT-1 or in combination with 3jc48-3, an inhibitor of obligate heterodimerization with MYC-associated protein X (MAX), in mice implanted with orthotopic PC PDX, decreased tumor growth. This is the first pre-clinical study demonstrating potential utility of MT-1 in the treatment of PC with c-Myc dysregulation.

4.
Hepatology ; 77(6): 1943-1957, 2023 06 01.
Article En | MEDLINE | ID: mdl-36052732

BACKGROUND: Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM: To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS: In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS: Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.


Carcinoma, Hepatocellular , Liver Neoplasms , Oncolytic Virotherapy , Mice , Humans , Animals , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Vesiculovirus , Disease Models, Animal , Cell Line, Tumor
5.
EJHaem ; 3(3): 804-814, 2022 Aug.
Article En | MEDLINE | ID: mdl-36051067

Identifying biomarkers associated with disease progression and drug resistance are important for personalized care. We investigated the expression of 121 curated genes, related to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) responsiveness. We analyzed 28 human multiple myeloma (MM) cell lines with known drug sensitivities and 130 primary MM patient samples collected at different disease stages, including newly diagnosed (ND), on therapy (OT), and relapsed and refractory (RR, collected within 12 months before the patients' death) timepoints. Our findings led to the identification of a subset of genes linked to clinical drug resistance, poor survival, and disease progression following combination treatment containing IMIDs and/or PIs. Finally, we built a seven-gene model (MM-IMiD and PI sensitivity-7 genes [IP-7]) using digital gene expression profiling data that significantly separates ND patients from IMiD- and PI-refractory RR patients. Using this model, we retrospectively analyzed RNA sequcencing (RNAseq) data from the Mulltiple Myeloma Research Foundation (MMRF) CoMMpass (n = 578) and Mayo Clinic MM patient registry (n = 487) to divide patients into probabilities of responder and nonresponder, which subsequently correlated with overall survival, disease stage, and number of prior treatments. Our findings suggest that this model may be useful in predicting acquired resistance to treatments containing IMiDs and/or PIs.

6.
Front Oncol ; 12: 842200, 2022.
Article En | MEDLINE | ID: mdl-35646666

Multiple myeloma (MM) is an incurable plasma cell malignancy with dose-limiting toxicities and inter-individual variation in response/resistance to the standard-of-care/primary drugs, proteasome inhibitors (PIs), and immunomodulatory derivatives (IMiDs). Although newer therapeutic options are potentially highly efficacious, their costs outweigh the effectiveness. Previously, we have established that clofazimine (CLF) activates peroxisome proliferator-activated receptor-γ, synergizes with primary therapies, and targets cancer stem-like cells (CSCs) in drug-resistant chronic myeloid leukemia (CML) patients. In this study, we used a panel of human myeloma cell lines as in vitro model systems representing drug-sensitive, innate/refractory, and clonally-derived acquired/relapsed PI- and cereblon (CRBN)-negative IMiD-resistant myeloma and bone marrow-derived CD138+ primary myeloma cells obtained from patients as ex vivo models to demonstrate that CLF shows significant cytotoxicity against drug-resistant myeloma as single-agent and in combination with PIs and IMiDs. Next, using genome-wide transcriptome analysis (RNA-sequencing), single-cell proteomics (CyTOF; Cytometry by time-of-flight), and ingenuity pathway analysis (IPA), we identified novel pathways associated with CLF efficacy, including induction of ER stress, autophagy, mitochondrial dysfunction, oxidative phosphorylation, enhancement of downstream cascade of p65-NFkB-IRF4-Myc downregulation, and ROS-dependent apoptotic cell death in myeloma. Further, we also showed that CLF is effective in killing rare refractory subclones like side populations that have been referred to as myeloma stem-like cells. Since CLF is an FDA-approved drug and also on WHO's list of safe and effective essential medicines, it has strong potential to be rapidly re-purposed as a safe and cost-effective anti-myeloma drug.

7.
JCO Precis Oncol ; 6: e2100274, 2022 06.
Article En | MEDLINE | ID: mdl-35666960

PURPOSE: This investigation sought to evaluate the prognostic value of pretreatment of circulating tumor DNA (ctDNA) in metastatic biliary tract cancers (BTCs) treated with platinum-based first-line chemotherapy treatment. MATERIALS AND METHODS: We performed a retrospective analysis of 67 patients who underwent ctDNA testing before platinum-based chemotherapy for first-line treatment for metastatic BTC. For analysis, we considered the detected gene with highest variant allele frequency as the dominant clone allele frequency (DCAF). Results of ctDNA analysis were correlated with patients' demographics, progression-free survival (PFS), and overall survival (OS). RESULTS: The median age of patients was 67 (27-90) years. Fifty-four (80.6%) of 67 patients evaluated had intrahepatic cholangiocarcinoma; seven had extrahepatic cholangiocarcinoma, and six gallbladder cancers. Forty-six (68.6%) of the patients were treated with cisplatin plus gemcitabine, and 16.4% of patients received gemcitabine and other platinum (carboplatin or oxaliplatin) combinations, whereas 15% of patients were treated on a clinical trial with gemcitabine and cisplatin plus additional agents (CX4945, PEGPH20, or nab-paclitaxel). TP53, KRAS, FGFR2, ARID1A, STK11, and IDH1 were the genes with highest frequency as DCAF. The median DCAF was 3% (0%-97%). DCAF > 3% was associated with worse OS (median OS: 10.8 v 18.8 months, P = .032). Stratifying DCAF in quartiles, DCAF > 10% was significantly related to worse PFS (median PFS: 3 months, P = .014) and worse OS (median OS: 7.0 months, P = .001). Each 1% increase in ctDNA was associated with a hazard ratio of 13.1 in OS when adjusting for subtypes, metastatic sites, size of largest tumor, age, sex, and CA19-9. CONCLUSION: DCAF at diagnosis of advanced BTC can stratify patients who have worse outcomes when treated with upfront platinum-based chemotherapy. Each increase in %ctDNA decreases survival probabilities.


Bile Duct Neoplasms , Biliary Tract Neoplasms , Cholangiocarcinoma , Circulating Tumor DNA , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/pathology , Biliary Tract Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Cisplatin , Clone Cells/pathology , Gene Frequency , Humans , Platinum/therapeutic use , Retrospective Studies
8.
SLAS Discov ; 27(1): 68-76, 2022 01.
Article En | MEDLINE | ID: mdl-35058178

There is substantial evidence that in addition to nicotine, other compounds found in tobacco smoke significantly influence smoking behavior. Further, recent years have seen an explosion in the availability of non-combusted products that deliver nicotine, such as e-cigarettes and "home-brew" vaping devices that are essentially unregulated. There are many thousands of compounds in tobacco smoke alone, and new products are constantly introducing new compounds. Uncovering which of these compounds are active, across multiple smoking-relevant subtypes of the nicotinic acetylcholine receptor (nAChR) that influence tobacco/nicotine addiction, requires a high-throughput screening (HTS) approach. Accordingly, we developed a panel of HTS-friendly cell-based assays, all performed in the same cellular background and using the same membrane potential dye readout, to measure the function of the α3ß4-, α4ß2-, and α6ß2-nAChR subtypes. These subtypes have each been prominently and consistently associated with human smoking behavior. We validated our assays by performing pilot screening of an expanded set of the Prestwick FDA-approved drug library. The screens displayed excellent performance parameters, and moderate hit rates (mean of 1.2% across all three assays) were achieved when identifying antagonists (chosen since effects of endogenous antagonists on consumption of nicotine/tobacco products are under-studied). Validation rates using an orthogonal assay (86Rb+ efflux) averaged 73% across the three assays. The resulting panel of assays represents a valuable new platform with which to screen and identify nAChR subtype-selective compounds. This provides a resource for identifying smoking-related compounds in both combusted and non-combusted tobacco products, with potential relevance in the search for additional smoking-cessation therapies.


Electronic Nicotine Delivery Systems , Receptors, Nicotinic , Tobacco Smoke Pollution , High-Throughput Screening Assays , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Smoking/drug therapy
9.
Hepatology ; 75(1): 43-58, 2022 01.
Article En | MEDLINE | ID: mdl-34407567

BACKGROUND AND AIMS: Biliary tract cancers (BTCs) are uncommon, but highly lethal, gastrointestinal malignancies. Gemcitabine/cisplatin is a standard-of-care systemic therapy, but has a modest impact on survival and harbors toxicities, including myelosuppression, nephropathy, neuropathy, and ototoxicity. Whereas BTCs are characterized by aberrations activating the cyclinD1/cyclin-dependent kinase (CDK)4/6/CDK inhibitor 2a/retinoblastoma pathway, clinical use of CDK4/6 inhibitors as monotherapy is limited by lack of validated biomarkers, diffident preclinical efficacy, and development of acquired drug resistance. Emerging studies have explored therapeutic strategies to enhance the antitumor efficacy of CDK4/6 inhibitors by the combination with chemotherapy regimens, but their mechanism of action remains elusive. APPROACH AND RESULTS: Here, we report in vitro and in vivo synergy in BTC models, showing enhanced efficacy, reduced toxicity, and better survival with a combination comprising gemcitabine/cisplatin and CDK4/6 inhibitors. Furthermore, we demonstrated that abemaciclib monotherapy had only modest efficacy attributable to autophagy-induced resistance. Notably, triplet therapy was able to potentiate efficacy through elimination of the autophagic flux. Correspondingly, abemaciclib potentiated ribonucleotide reductase catalytic subunit M1 reduction, resulting in sensitization to gemcitabine. CONCLUSIONS: As such, these data provide robust preclinical mechanistic evidence of synergy between gemcitabine/cisplatin and CDK4/6 inhibitors and delineate a path forward for translation of these findings to preliminary clinical studies in advanced BTC patients.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biliary Tract Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autophagy/drug effects , Biliary Tract Neoplasms/mortality , Biliary Tract Neoplasms/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Synergism , Humans , Mice , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Gemcitabine
10.
Dig Dis Sci ; 67(8): 3797-3805, 2022 08.
Article En | MEDLINE | ID: mdl-34773565

BACKGROUND: FGFR2 genomic alterations are observed in 10-20% of cholangiocarcinoma (CCA). Although FGFR2 fusions are an important actionable target, FGFR2 protein expression has not been thoroughly characterized. AIMS: To evaluate FGFR2 protein expression in cholangiocarcinoma harboring FGFR2 genomic alterations. METHODS: FGFR2 protein expression was evaluated in 99 CCA cases with two different antibodies. FGFR2 genomic alterations were confirmed via next-generating sequencing (NGS) or FISH. Primary objective was to determine the specificity and sensitivity of FGFR2 immunohistochemistry staining for detecting FGFR2 genomic alterations. Secondary objectives included overall FGFR2 immunohistochemistry staining in CCA patients, and evaluation of whether FGFR2 expression correlates with clinical outcomes including overall survival (OS), progression-free survival (PFS), and time-to-tumor recurrence (TTR). RESULTS: Immunohistochemistry staining with two antibodies against FGFR2, FPR2-D, and clone 98706 showed high accuracy (78.7% and 91.9%) and specificity (82.9% and 97.7%), and moderate sensitivity (53.9% and 57.1%), respectively, when compared with the standard methods for detecting FGFR2 genomic alterations. In a median follow-up of 72 months, there were no statistically significant differences in OS, PFS, and TTR, for patients with positive or negative FGFR2 staining. CONCLUSION: FGFR2 protein expression by immunohistochemistry has high specificity and therefore could be used to imply the presence of FGFR2 genomic alterations in the context of a positive test. In the case of a negative test, NGS or FISH would be necessary to ascertain cases with FGFR2 genomic alterations.


Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Genomics , Humans , Immunohistochemistry , Neoplasm Recurrence, Local/pathology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
11.
Protein Expr Purif ; 185: 105890, 2021 09.
Article En | MEDLINE | ID: mdl-33971243

Human G-protein coupled receptor kinase 6 (GRK6) belongs to the GRK4 kinase subfamily of the G protein-coupled receptor kinase family which comprises of GRK1, GRK2, and GRK4. These kinases phosphorylate ligand-activated G-protein coupled receptors (GPCRs), driving heterotrimeric G protein coupling, desensitization of GPCR, and ß-arrestin recruitment. This reaction series mediates cellular signal pathways for cell survival, proliferation, migration and chemotaxis. GRK6 is a kinase target in multiple myeloma since it is highly expressed in myeloma cells compared to epithelial cells and has a significant role in mediating the chemotactic responses of T and B-lymphocytes. To support structure-based drug design, we describe three human GRK6 constructs, GRK6, GRK6His/EK, and GRK6His/TEV, designed for protein expression in Spodoptera frugiperda Sf9 insect cells. The first construct did not contain any purification tag whereas the other two constructs contained the His10 affinity tag, which increased purification yields. We report here that all three constructs of GRK6 were overexpressed in Sf9 insect cells and purified to homogeneity at levels that were suitable for co-crystallization of GRK6 with potential inhibitors. The yields of purified GRK6, GRK6His/EK, and GRK6His/TEV were 0.3 mg, 0.8 mg and 0.7 mg per liter of cell culture, respectively. In addition, we have shown that GRK6His/TEV with the His10 tag removed was highly homogeneous and monodisperse as observed by dynamic light scattering measurement and actively folded as exhibited by circular dichroism spectroscopy. The described methods will support the structure-based development of additional therapeutics against multiple myeloma.


G-Protein-Coupled Receptor Kinases/isolation & purification , Neoplasm Proteins/isolation & purification , Recombinant Fusion Proteins/isolation & purification , Animals , Antineoplastic Agents/chemical synthesis , Baculoviridae/genetics , Baculoviridae/metabolism , Chromatography/methods , Cloning, Molecular , Drug Design , G-Protein-Coupled Receptor Kinases/chemistry , G-Protein-Coupled Receptor Kinases/genetics , G-Protein-Coupled Receptor Kinases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Multiple Myeloma/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sf9 Cells , Spodoptera
12.
Blood Cancer J ; 10(5): 54, 2020 05 11.
Article En | MEDLINE | ID: mdl-32393731

Seventy-six FDA-approved oncology drugs and emerging therapeutics were evaluated in 25 multiple myeloma (MM) and 15 non-Hodgkin's lymphoma cell lines and in 113 primary MM samples. Ex vivo drug sensitivities were mined for associations with clinical phenotype, cytogenetic, genetic mutation, and transcriptional profiles. In primary MM samples, proteasome inhibitors, dinaciclib, selinexor, venetoclax, auranofin, and histone deacetylating agents had the broadest cytotoxicity. Of interest, newly diagnosed patient samples were globally less sensitive especially to bromodomain inhibitors, inhibitors of receptor tyrosine kinases or non-receptor kinases, and DNA synthesis inhibitors. Clustering demonstrated six broad groupings of drug sensitivity linked with genomic biomarkers and clinical outcomes. For example, our findings mimic clinical observations of increased venetoclax responsiveness in t(11;14) patients but also identify an increased sensitivity profile in untreated patients, standard genetic risk, low plasma cell S-Phase, and in the absence of Gain(1q) and t(4;14). In contrast, increased ex vivo responsiveness to selinexor was associated with biomarkers of poor prognosis and later relapse patients. This "direct to drug" screening resource, paired with functional genomics, has the potential to successfully direct appropriate individualized therapeutic approaches in MM and to enrich clinical trials for likely responders.


Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Multiple Myeloma/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Humans , Hydrazines/pharmacology , Multiple Myeloma/genetics , Precision Medicine/methods , Sulfonamides/pharmacology , Triazoles/pharmacology , Tumor Cells, Cultured
13.
Haematologica ; 105(6): 1641-1649, 2020 06.
Article En | MEDLINE | ID: mdl-31582538

The cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against multiple myeloma was initially identified in an unbiased in vitro chemical library screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the tested cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcription factor EB, a master regulator of lysosomal biogenesis and autophagy. Furthermore, we established an assay measuring autophagy as a predictive marker of APY0201 sensitivity. Overall, these findings indicate promising activity of PIKfyve inhibitors secondary to disruption of autophagy in multiple myeloma and suggest a strategy to enrich for likely responders.


Multiple Myeloma , Autophagy , Humans , Lysosomes , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors
14.
Mol Cancer Ther ; 19(1): 112-122, 2020 01.
Article En | MEDLINE | ID: mdl-31575656

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme overexpressed by many different tumor types. QSOX1 catalyzes the formation of disulfide bonds in proteins. Because short hairpin knockdowns (KD) of QSOX1 have been shown to suppress tumor growth and invasion in vitro and in vivo, we hypothesized that chemical compounds inhibiting QSOX1 enzymatic activity would also suppress tumor growth, invasion, and metastasis. High throughput screening using a QSOX1-based enzymatic assay revealed multiple potential QSOX1 inhibitors. One of the inhibitors, known as "SBI-183," suppresses tumor cell growth in a Matrigel-based spheroid assay and inhibits invasion in a modified Boyden chamber, but does not affect viability of nonmalignant cells. Oral administration of SBI-183 inhibits tumor growth in 2 independent human xenograft mouse models of renal cell carcinoma. We conclude that SBI-183 warrants further exploration as a useful tool for understanding QSOX1 biology and as a potential novel anticancer agent in tumors that overexpress QSOX1.


Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/drug therapy , Oxidoreductases Acting on Sulfur Group Donors/therapeutic use , Animals , Female , Humans , Mice , Mice, SCID
15.
JCO Precis Oncol ; 20172017.
Article En | MEDLINE | ID: mdl-30761385

PURPOSE: Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician's ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. MATERIALS AND METHODS: Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. RESULTS: The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522VUSs of interest, including a large number of kinases. Ten receptortyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. CONCLUSION: The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians' ability to make informed treatment decisions.

16.
J Med Chem ; 59(19): 8859-8867, 2016 10 13.
Article En | MEDLINE | ID: mdl-27603688

Systemic lupus erythematosus is an autoimmune disease that can affect numerous tissues and is characterized by the production of nuclear antigen-directed autoantibodies (e.g., anti-dsDNA). Using a combination of virtual and ELISA-based screens, we made the intriguing discovery that several HIV-protease inhibitors can function as decoy antigens to specifically inhibit the binding of anti-dsDNA antibodies to target antigens such as dsDNA and pentapeptide DWEYS. Computational modeling revealed that HIV-protease inhibitors comprised structural features present in DWEYS and predicted that analogues containing more flexible backbones would possess preferred binding characteristics. To address this, we reduced the internal amide backbone to improve flexibility, producing new small-molecule decoy antigens, which neutralize anti-dsDNA antibodies in vitro, in situ, and in vivo. Pharmacokinetic and SLE model studies demonstrated that peptidomimetic FISLE-412,1 a reduced HIV protease inhibitor analogue, was well-tolerated, altered serum reactivity to DWEYS, reduced glomeruli IgG deposition, preserved kidney histology, and delayed SLE onset in NZB/W F1 mice.


Antibodies, Antinuclear/immunology , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Animals , DNA/immunology , Drug Discovery , Female , HIV Protease Inhibitors/pharmacokinetics , HIV Protease Inhibitors/pharmacology , Humans , Kidney Glomerulus/drug effects , Kidney Glomerulus/immunology , Kidney Glomerulus/pathology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Inbred NZB , Models, Molecular
17.
Oncotarget ; 6(21): 18418-28, 2015 Jul 30.
Article En | MEDLINE | ID: mdl-26158899

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.


Azoles/pharmacology , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Organoselenium Compounds/pharmacology , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Pancreatic Neoplasms/drug therapy , Amino Acid Sequence , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Azoles/chemistry , Blotting, Western , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cysteine/antagonists & inhibitors , Cysteine/genetics , Cysteine/metabolism , Humans , Isoindoles , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Mice, Nude , Molecular Sequence Data , Molecular Structure , Neoplasm Invasiveness , Organoselenium Compounds/chemistry , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Oxidoreductases Acting on Sulfur Group Donors/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA Interference , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
18.
Bioorg Med Chem ; 22(21): 5871-82, 2014 Nov 01.
Article En | MEDLINE | ID: mdl-25311563

In the search for new potential hypolipidemic agents, the present study focused on the synthesis of 2-acyl phenols (6a-c and 7a-c) and their saturated side-chain alkyl phenols (4a-c and 5a-c), and on the evaluation of their hypolipidemic activity using a murine Tyloxapol-induced hyperlipidemic protocol. The whole series of compounds 4-7 greatly and significantly reduced elevated serum levels of total cholesterol, LDL-cholesterol, and triglycerides, with series 6 and 7 showing the greatest potency ever found in our laboratory. At the minimum dose (25mg/kg/day), the latter compounds lowered cholesterol by 68-81%, LDL by 72-86%, and triglycerides by 59-80%. This represents a comparable performance than that shown by simvastatin. Experimental evidence and docking studies suggest that the activity of these derivatives is associated with the inhibition of HMG-CoA reductase.


Anisoles/chemistry , Anisoles/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Phenols/chemistry , Phenols/pharmacology , Allylbenzene Derivatives , Animals , Binding Sites , Catalytic Domain , Cholesterol/blood , Cholesterol, LDL/blood , Crystallography, X-Ray , Enzyme Activation/drug effects , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Male , Mice , Mice, Inbred ICR , Molecular Conformation , Molecular Docking Simulation , Protein Binding , Triglycerides/blood , Weight Gain/drug effects
19.
ChemMedChem ; 9(3): 560-5, 2014 Mar.
Article En | MEDLINE | ID: mdl-24482360

DNA hypomethylating drugs that act on DNA methyltransferase (DNMT) isoforms are promising anticancer agents. By using a well-characterized live-cell system to measure DNA methylation revisions (imprints), we characterize olsalazine, an approved anti-inflammatory drug, as a novel DNA hypomethylating agent. The cell-based screen used in this work is highly tractable, internally controlled, and well-suited for a drug repurposing strategy in epigenetics. Olsalazine very closely mimics the action of 5-aza-2'-deoxycytidine, a known hypomethylating drug, with minimal cytotoxicity at the concentrations tested. Olsalazine was identified by a rapid computer-guided similarity search of a database of approved drugs to a previously identified inhibitor of DNMTs.


Aminosalicylic Acids/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , DNA/drug effects , Drug Repositioning , Epigenesis, Genetic/drug effects , Aminosalicylic Acids/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , DNA/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Epigenesis, Genetic/genetics , HeLa Cells , Humans , Molecular Structure
20.
Future Med Chem ; 6(3): 281-94, 2014 Mar.
Article En | MEDLINE | ID: mdl-24279680

BACKGROUND: Benzimidazole derivatives are promising compounds for the treatment of parasitic infections. The structure-activity relationships of 91 benzimidazoles with activity against Trichomonas vaginalis and Giardia intestinalis were analyzed using a novel activity landscape modeling approach. RESULTS: We identified two prominent cases of 'activity switches' and 'selectivity switches' where two R group substitutions in the benzimidazole scaffold completely invert the activity and selectivity pattern for T. vaginalis and G. intestinalis. CONCLUSION: A chemoinformatic methodology was used to rapidly identify discrete structural changes around the central scaffold that are associated with large changes in biological activity for each parasite. The structure-activity relationships for the benzimidazole derivatives is smooth for both protozoan with few but markedly important activity cliffs.


Antiprotozoal Agents/chemistry , Benzimidazoles/chemistry , Giardia lamblia/drug effects , Giardiasis/drug therapy , Trichomonas Vaginitis/drug therapy , Trichomonas vaginalis/drug effects , Antiprotozoal Agents/pharmacology , Benzimidazoles/pharmacology , Computer-Aided Design , Databases, Pharmaceutical , Drug Design , Female , Humans , Structure-Activity Relationship
...