Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Cyberpsychol Behav Soc Netw ; 27(6): 363-371, 2024 Jun.
Article En | MEDLINE | ID: mdl-38513055

Virtual reality (VR) is a potent educational tool with untapped potential in medical training. However, its integration into medical schools faces challenges such as cybersickness and hesitancy among medical students and professionals. Notably, there has been no systematic assessment of the acceptance of medical educational VR applications by both students and educators. In our single-center study, we enrolled 133 medical students and 14 medical educators. Following a practical demonstration of the established VR anatomy application, Sharecare YOU VR, participants completed a self-reporting survey based on the Technology Acceptance Model (TAM), exploring user acceptance of information technologies and focusing on perceived usefulness (PU), perceived ease of use (PEU), and attitude toward using (ATU). We also sought insights into potential future applications of VR in medical education. Our findings indicate a high level of acceptance among medical students and educators upon structured exposure to VR with significantly positive responses for all three TAM variables (PU, PEU, and ATU). Intriguingly, hands-on experience influenced acceptance. Students envisioned VR's benefits in anatomy, surgery, emergency medicine, and communication skill training with patients. Both students and educators believed that VR could enhance traditional approaches and complement the existing curriculum, anticipating improved preparedness for medical students through VR training applications. In conclusion, our results demonstrate the receptivity of both students and educators to immersive technologies, including VR, in medical education. Importantly, the data suggest that the adoption of VR in this field would be welcomed rather than resisted, potentially enhancing students' self-efficacy and enriching the medical school curriculum.


Students, Medical , Virtual Reality , Humans , Students, Medical/psychology , Male , Female , Adult , Young Adult , Faculty, Medical/psychology , Education, Medical/methods
2.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Article En | MEDLINE | ID: mdl-37760754

Porphyromonas gingivalis (P.g.) is a key pathogen involved in periodontal diseases. The aim of this study was to investigate the prevalence and phylogenetic origin of the lipoprotein-gene ragB in its most virulent variant, ragB-1 (co-transcribed with ragA-1 as locus rag-1), in different P.g. strains collected worldwide. A total of 138 P.g. strains were analyzed for the presence of ragB-1 by pooled analysis and subsequently individual PCRs. Sequencing a core fragment of ragB-1 of the individual strains made it possible to carry out a phylogenetic classification using sequence alignment. In total, 22 of the 138 P.g. strains tested positive for ragB-1, corresponding to a prevalence of 16%. The fragment investigated was highly conserved, with variations in the base sequence detected in only three strains (OMI 1072, OMI 1081, and OMI 1074). In two strains, namely OMI 1072 (original name: I-433) and OMI 1081 (original name: I-372), which originate from monkeys, two amino-acid alterations were apparent. Since ragB-1 has also been found in animal strains, it may be concluded that rag-1 was transferred from animals to humans and that this originally virulent variant was weakened by mutations over time so that new, less virulent, adapted commensal versions of rag (rag-2, -3, and -4), with P.g. as the host, evolved.

3.
Mol Oral Microbiol ; 38(5): 408-423, 2023 Oct.
Article En | MEDLINE | ID: mdl-37750230

Porphyromonas gingivalis is a key pathobiont in periodontitis. Its long fimbriae consist of a single anchor (FimB), a varying number of stalk (FimA), and three accessory (tip-related) proteins (FimC, FimD, and FimE). Based on 133 strains/genomes available, it was our aim to investigate the diversity within FimA and FimB and explain the variety of long fimbriae (super-)structures. Combining the new forward primer fimAnewF with the established fimAunivR, we were able to amplify and sequence fimA including its leader region covering all genotypes and serotypes for phylogenetic analysis. We designed two primer pairs sensing the presence of an internal stop codon in fimB with an impact on fimbrial length. Finally, we examined fimbrial secondary structures by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The phylogeny of fimA/FimA revealed two new subtypes (IIa and IIb) with specific changes in functional domains and thus adding to the current classification scheme (I, Ib, and II-V). Regarding evolution, we confirm that Porphyromonas gulae fimA-type A is closely related to human P. gingivalis strains of cluster Ib and might be its ancestor genotype. A fimB internal stop codon is rare and was found in ATCC 33277 only. Comparing P. gingivalis TEM/SEM pictures of type I ATCC 33277 with type V OMI622 revealed a broad spectrum of fimbrial structures including bundling, cell-cell knotting, and brick-wall formation. In conclusion, FimA forms more distinct subtypes than previously known. The bundling of long fimbriae, a mechanism known from EPEC/EHEC and Salmonella, is proposed and supported by TEM/SEM pictures for the first time here. The role and variations of terminal accessory FimC-E in superstructure formation and/or (co-) adhesion should be investigated more closely next.

4.
ACS Macro Lett ; 12(6): 808-813, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37271973

Multilamella polymer crystals are grown from the melt for the first time, in molecular dynamics simulations of a united-monomer model, with in excess of 1500000 united-monomers. Two-component systems comprised of equal weight fractions of 2000 united-monomer long chains and 200 united-monomer short chains are considered, with varying numbers of short butyl branches placed along the long chains. Utilizing two different cooling protocols, continuous-cooling and self-seeding, drastically different multilamella structures are revealed, which depend heavily on the branch content and crystallization protocol used. By self-seeding, well-aligned multilamella crystals are grown, which more clearly reveal the subtle alterations an increasing number of branches create on the size and shape of the crystallites in the early stages of spherulite formation. Under continuous cooling, this observation is almost completely obscured. At maximum thickness, chain portions as long as 100 united-monomers (200 carbons) are extended inside the crystalline lamella.

5.
Macromolecules ; 53(23): 10475-10486, 2020 Dec 08.
Article En | MEDLINE | ID: mdl-33335339

Similar to macroscopic ropes and cables, long polymers create knots. We address the fundamental question whether and under which conditions it is possible to describe these intriguing objects with crude models that capture only mesoscale polymer properties. We focus on melts of long polymers which we describe by a model typical for mesoscopic simulations. A worm-like chain model defines the polymer architecture. To describe nonbonded interactions, we deliberately choose a generic "soft" repulsive potential that leads to strongly overlapping monomers and coarse local liquid structure. The soft model is parametrized to accurately reproduce mesoscopic structure and conformations of reference polymer melts described by a microscopic model. The microscopically resolved samples retain all generic features affecting polymer topology and provide, therefore, reliable reference data on knots. We compare characteristic knotting properties in mesoscopic and microscopically resolved melts for different cases of chain stiffness. We conclude that mesoscopic models can reliably describe knots in those melts, where the length scale characterizing polymer stiffness is substantially larger than the size of monomer-monomer excluded volume. In this case, simplified local liquid structure influences knotting properties only marginally. In contrast, mesoscopic models perform poorly in melts with flexible chains. We qualitatively explain our findings through a free energy model of simple knots available in the literature.

6.
Rev Sci Instrum ; 90(6): 063102, 2019 Jun.
Article En | MEDLINE | ID: mdl-31255001

We have constructed an apparatus containing a linear ion trap and a high-finesse optical cavity in the ultraviolet spectral range. In our construction, we have avoided all organic materials inside the ultrahigh vacuum chamber. We show that, unlike previously reported, the optical cavity does not degrade in performance over a time scale of 9 months.

7.
Soft Matter ; 15(12): 2657-2665, 2019 Mar 20.
Article En | MEDLINE | ID: mdl-30839978

We study the compression of bundles of aligned macroscopic fibers with intrinsic shape disorder, as found in human hair and in many other natural and man-made systems. We show by a combination of experiments, numerical simulations and theory how the statistical properties of the shapes of the fibers control the collective mechanical behaviour of the bundles. This work paves the way for designing aligned fibrous matter with purposed-designed properties from large numbers of individual strands of selected geometry and rigidity.

8.
ACS Macro Lett ; 7(6): 757-761, 2018 Jun 19.
Article En | MEDLINE | ID: mdl-35632960

We analyze the occurrence of knots, their spectrum, and sizes in polymer melts. Surprisingly, the number of knots in melt conformations is much lower than expected from a mapping to a random walk with the same Kuhn segment length. The effective random walk severely overrates the occurrence of knots and their complexity, particularly when compared to melts of flexible chains, indicating that nontrivial effects due to remnants of self-avoidance play a role for the chain lengths considered in this numerical study. For melt chains with higher persistence length, the effect is less pronounced. In addition, we find that chains in a melt have a knot structure very similar to dilute single chains close to the collapse transition. We finally show that typical equilibration procedures are well-suited to relax the topology in melts.

9.
Phys Rev Lett ; 118(6): 067802, 2017 Feb 10.
Article En | MEDLINE | ID: mdl-28234517

The reptation mechanism, introduced by de Gennes and Edwards, where a polymer diffuses along a fluffy tube, defined by the constraints imposed by its surroundings, convincingly describes the relaxation of long polymers in concentrated solutions and melts. We propose that the scale for the tube diameter is set by local chain segregation, which we study analytically. We show that the concept of local segregation is especially operational for confined geometries, where segregation extends over mesoscopic domains, drastically reducing binary contacts, and provide an estimate of the entanglement length. Our predictions are quantitatively supported by extensive molecular dynamics simulations on systems consisting of long, entangled chains.

10.
Polymers (Basel) ; 8(8)2016 Aug 08.
Article En | MEDLINE | ID: mdl-30974563

We give an extended review of recent numerical and analytical studies on semiflexible chains near surfaces undertaken at Institut Charles Sadron (sometimes in collaboration) with a focus on static properties. The statistical physics of thin confined layers, strict two-dimensional (2D) layers and adsorption layers (both at equilibrium with the dilute bath and from irreversible chemisorption) are discussed for the well-known worm-like-chain (WLC) model. There is mounting evidence that biofilaments (except stable d-DNA) are not fully described by the WLC model. A number of augmented models, like the (super) helical WLC model, the polymorphic model of microtubules (MT) and a model with (strongly) nonlinear flexural elasticity are presented, and some aspects of their surface behavior are analyzed. In many cases, we use approaches different from those in our previous work, give additional results and try to adopt a more general point of view with the hope to shed some light on this complex field.

11.
Phys Rev Lett ; 111(17): 173003, 2013 Oct 25.
Article En | MEDLINE | ID: mdl-24206485

Neutron scattering and extensive molecular dynamics simulations of an all atom C(100)H(202) system were performed to address the short-time dynamics leading to center-of-mass self-diffusion. The simulated dynamics are in excellent agreement with resolution resolved time-of-flight quasielastic neutron scattering. The anomalous subdiffusive center-of-mass motion could be modeled by explicitly accounting for viscoelastic hydrodynamic interactions. A model-free analysis of the local reorientations of the molecular backbone revealed three relaxation processes: While two relaxations characterize local bond rotation and global molecular reorientation, the third component on intermediate times could be attributed to transient flowlike motions of atoms on different molecules. The existence of these collective motions, which are clearly visualized in this Letter, strongly contribute to the chain relaxations in molecular liquids.


Models, Chemical , Polyethylene/chemistry , Computer Simulation , Elasticity , Hydrodynamics , Molecular Dynamics Simulation , Neutron Diffraction , Viscosity
12.
Phys Rev Lett ; 110(4): 043003, 2013 Jan 25.
Article En | MEDLINE | ID: mdl-25166162

We present the realization of a combined trapped-ion and optical cavity system, in which a single Yb(+) ion is confined by a micron-scale ion trap inside a 230 µm-long optical fiber cavity. We characterize the spatial ion-cavity coupling and measure the ion-cavity coupling strength using a cavity-stimulated Λ transition. Owing to the small mode volume of the fiber resonator, the coherent coupling strength between the ion and a single photon exceeds the natural decay rate of the dipole moment. This system can be integrated into ion-photon quantum networks and is a step towards cavity quantum electrodynamics based quantum information processing with trapped ions.


Fiber Optic Technology/methods , Quantum Theory , Ytterbium/chemistry , Ions/chemistry , Photons
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021808, 2012 Feb.
Article En | MEDLINE | ID: mdl-22463237

This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.


Finite Element Analysis , Models, Chemical , Models, Molecular , Polymers/chemistry , Computer Simulation , Molecular Conformation
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(4 Pt 1): 041801, 2007 Apr.
Article En | MEDLINE | ID: mdl-17500913

We present results from constant pressure molecular-dynamics simulations for a bead-spring model of a crystallizable polymer melt. Our model has two main features, a chemically realistic intrachain rigidity and a purely repulsive interaction between nonbonded monomers. By means of intrachain and interchain structure factors we explore polymer conformation and melt structure above and below the temperature T{crys}{hom} of homogeneous crystallization. Here, we do not only determine average spatial correlations, but also site-specific correlations which depend on the position of the monomers along the polymer backbone. In the liquid phase above T{crys}{hom} we find that this site dependence can be well-accounted for by known theoretical approximations, the Koyama distribution for the intrachain structure and the polymer reference interaction site model (PRISM) for the interchain structure. This is no longer true in the semicrystalline phase. Below T{crys}{hom} short chains fully extend upon crystallization, whereas sufficiently long chains form chain-folded lamellae which coexist with amorphous regions. The structural features of these polymer crystals lead to violations of premises of the Koyama approximation or PRISM theory so that both theoretical approaches cannot be applied simultaneously. Furthermore, we find a violation of the Hansen-Verlet freezing criterion; our polymer melt crystallizes more easily than a simple liquid. This hints at the importance of the coupling between conformation (backbone rigidity) and density (packing constraints) for polymer crystallization.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 1): 051806, 2007 Nov.
Article En | MEDLINE | ID: mdl-18233680

We report on quantitative comparisons between simulation results of a bead-spring model and mode-coupling theory calculations for the structural and conformational dynamics of a supercooled, unentangled polymer melt. We find semiquantitative agreement between simulation and theory, except for processes that occur on intermediate length scales between the compressibility plateau and the amorphous halo of the static structure factor. Our results suggest that the onset of slow relaxation in a glass-forming melt can be described in terms of monomer caging supplemented by chain connectivity. Furthermore, a unified atomistic description of glassy arrest and of conformational fluctuations that (asymptotically) follow the Rouse model emerges from our theory.

16.
J Chem Theory Comput ; 2(3): 616-29, 2006 May.
Article En | MEDLINE | ID: mdl-26626669

We derive coarse-grained models of polyethylene in the melt state with the aim to study polymer crystallization. This requires a low level of coarse-graining: We use a mapping of two CH2 groups onto one bead. The coarse-grained beads are connected with harmonic springs, an optimized angular potential, and an optional torsional potential. Coarse-grained potentials are derived from detailed all-atom simulations, and an optimized form of the force field is then derived which achieves a good accuracy in reproducing the static properties of the chains. We address the question over which temperature range such models can be used, and in particular if the model is capable of reproducing the phase transition to an ordered state; it is found that the qualitative behavior of short polyethylene chains is well described, and the experimental melting temperature of C44H90 is approached when using the most accurate optimized model.

...