Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(9): e0239131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915910

RESUMEN

The genotype of a single SNP, rs12913832, is the primary predictor of blue and brown eye colours. The genotypes rs12913832:AA and rs12913832:GA are most often observed in individuals with brown eye colours, whereas rs12913832:GG is most often observed in individuals with blue eye colours. However, approximately 3% of Europeans with the rs12913832:GG genotype have brown eye colours. The purpose of the study presented here was to identify variants that explain brown eye colour formation in individuals with the rs12913832:GG genotype. Genes and regulatory regions surrounding SLC24A4, TYRP1, SLC24A5, IRF4, TYR, and SLC45A2, as well as the upstream region of OCA2 within the HERC2 gene were sequenced in a study comprising 40 individuals with the rs12913832:GG genotype. Of these, 24 individuals were considered to have blue eye colours and 16 individuals were considered to have brown eye colours. We identified 211 variants within the SLC24A4, TYRP1, IRF4, and TYR target regions associated with eye colour. Based on in silico analyses of predicted variant effects we recognized four variants, TYRP1 rs35866166:C, TYRP1 rs62538956:C, SLC24A4 rs1289469:C, and TYR rs1126809:G, to be the most promising candidates for explanation of brown eye colour in individuals with the rs12913832:GG genotype. Of the 16 individuals with brown eye colours, 14 individuals had four alleles, whereas the alleles were rare in the blue eyed individuals. rs35866166, rs62538956, and rs1289469 were for the first time found to be associated with pigmentary traits, whilst rs1126809 was previously found to be associated with pigmentary variation. To improve prediction of eye colours we suggest that future eye colour prediction models should include rs35866166, rs62538956, rs1289469, and rs1126809.


Asunto(s)
Antiportadores/genética , Color del Ojo/genética , Glicoproteínas de Membrana/genética , Monofenol Monooxigenasa/genética , Oxidorreductasas/genética , Análisis Mutacional de ADN , Europa (Continente) , Ojo/diagnóstico por imagen , Predicción/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Genéticos , Fotograbar , Polimorfismo de Nucleótido Simple , Población Blanca/genética
2.
Int J Legal Med ; 134(5): 1569-1579, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32385594

RESUMEN

Although many genes have been shown to be associated with human pigmentary traits and forensic prediction assays exist (e.g. HIrisPlex-S), the genetic knowledge about skin colour remains incomplete. The highly admixed Brazilian population is an interesting study population for investigation of the complex genotype-phenotype architecture of human skin colour because of its large variation. Here, we compared variants in 22 pigmentary genes with quantitative skin pigmentation levels on the buttock, arm, and forehead areas of 266 genetically admixed Brazilian individuals. The genetic ancestry of each individual was estimated by typing 46 AIM-InDels. The mean proportion of genetic ancestry was 68.8% European, 20.8% Sub-Saharan African, and 10.4% Native American. A high correlation (adjusted R2 = 0.65, p < 0.05) was observed between nine SNPs and quantitative skin pigmentation using multiple linear regression analysis. The correlations were notably smaller between skin pigmentation and biogeographic ancestry (adjusted R2 = 0.45, p < 0.05), or markers in the leading forensic skin colour prediction system, the HIrisPlex-S (adjusted R2 = 0.54, p < 0.05). Four of the nine SNPs, OCA2 rs1448484 (rank 2), APBA2 rs4424881 (rank 4), MFSD12 rs10424065 (rank 8), and TYRP1 1408799 (rank 9) were not investigated as part of the HIrisPlex-S selection process, and therefore not included in the HIrisPlex-S model. Our results indicate that these SNPs account for a substantial part of the skin colour variation in individuals of admixed ancestry. Hence, we suggest that these SNPs are considered when developing future skin colour prediction models.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel/genética , Población Negra/genética , Brasil/etnología , ADN/genética , Marcadores Genéticos , Técnicas de Genotipaje/instrumentación , Humanos , Pueblos Indígenas/genética , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...