Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Invest Dermatol ; 143(11): 2177-2192.e13, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37142187

RESUMEN

Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell-cell interactions, but conserved or divergent mechanisms governing this equilibrium across species and how an imbalance contributes to skin disease are largely undefined. To address these questions, human skin single-cell RNA sequencing and spatial transcriptomics data were integrated and compared with mouse skin data. Human skin cell-type annotation was improved using matched spatial transcriptomics data, highlighting the importance of spatial context in cell-type identity, and spatial transcriptomics refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of the disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.


Asunto(s)
Enfermedades de la Piel , Transcriptoma , Humanos , Animales , Ratones , Piel , Queratinocitos/metabolismo , Epidermis/patología , Enfermedades de la Piel/patología , Comunicación Celular
2.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608661

RESUMEN

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Asunto(s)
ARN Helicasas DEAD-box , Glucosa , Queratinocitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glucosa/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Humanos
3.
PLoS Pathog ; 17(10): e1009412, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597346

RESUMEN

Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Parásitos/fisiología , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Humanos , Biosíntesis de Proteínas/fisiología , Proteoma/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34368786

RESUMEN

Some of the biochemical abnormalities underlying schizophrenia, involve differences in methylation and methylating enzymes, as well as other related target genes. We present results of a study of differences in mRNA expression in peripheral blood lymphocytes (PBLs) and post-mortem brains of chronic schizophrenics (CSZ) and non-psychotic controls (NPC), emphasizing the differential effects of sex and antipsychotic drug treatment on mRNA findings. We studied mRNA expression in lymphocytes of 61 CSZ and 49 NPC subjects using qPCR assays with TaqMan probes to assess levels of DNMT, TET, GABAergic, NR3C1, BDNF mRNAs, and several additional targets identified in a recent RNA sequence analysis. In parallel we studied DNMT1 and GAD67 in samples of brain tissues from 19 CSZ, 26 NPC. In PBLs DNMT1 and DNMT3A mRNA levels were significantly higher in male CSZ vs NPC. No significant differences were detected in females. The GAD1, NR3C1 and CNTNAP2 mRNA levels were significantly higher in CSZ than NPC. In CSZ patients treated with clozapine, GAD-1 related, CNTNAP2, and IMPA2 mRNAs were significantly higher than in CSZ subjects not treated with clozapine. Differences between CSZ vs NPC in these mRNAs was primarily attributable to the clozapine treatment. In the brain samples, DNMT1 was significantly higher and GAD67 was significantly lower in CSZ than in NPC, but there were no significant sex differences in diagnostic effects. These findings highlight the importance of considering sex and drug treatment effects in assessing the substantive significance of differences in mRNAs between CSZ and NPC.

5.
bioRxiv ; 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33655243

RESUMEN

Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2. AUTHOR SUMMARY: SARS-CoV-2 is the latest pathogenic coronavirus to emerge as a public health threat. We create a database of proximal host proteins to 17 SARS-CoV-2 viral proteins. We validate that NSP1 is proximal to the EIF3 translation initiation complex and is a potent inhibitor of translation. We also identify ORF6 antagonism of RNA-mediate innate immune signaling. We produce a database of potential host targets of the viral protease NSP5, and create a fluorescence-based assay to screen cleavage of peptide sequences. We believe that this data will be useful for identifying roles for many of the uncharacterized SARS-CoV-2 proteins and provide insights into the pathogenicity of new or emerging coronaviruses.

7.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579974

RESUMEN

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Genómica/métodos , Neoplasias Cutáneas/metabolismo , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , RNA-Seq , Análisis de la Célula Individual , Piel/metabolismo , Neoplasias Cutáneas/patología , Transcriptoma , Trasplante Heterólogo
9.
Psychopharmacology (Berl) ; 235(12): 3545-3558, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30382354

RESUMEN

RATIONALE: Weight gain during treatment with antipsychotics is a prominent side-effect, especially with some second-generation antipsychotics, such as olanzapine and clozapine, and pharmacological treatments which ameliorate this side-effect are important to investigate. Decreases in histaminergic transmission in the brain induced by antipsychotics may be one of the mechanisms contributing to weight gain. Since betahistine is a histaminergic agonist, it may potentially counteract the weight gain effects of antipsychotics. METHOD: We conducted a double-blind placebo-controlled study to evaluate the effects of 12 weeks of treatment with betahistine (N = 29) or placebo (N = 22) in adolescents and adults on anthropomorphically measured weight-related parameters, appetite, and fasting glucose-lipid and leptin levels in 51 patients treated with first and/or second-generation antipsychotics who had gained weight during treatment or had high body-mass-index (BMI). Psychopathology and side-effects were also assessed with relevant scales. RESULTS: In a sub-group of patients being treated with olanzapine or clozapine (n = 26), betahistine was significantly (P < .05) better than placebo in preventing increases in weight (3.1 kg less weight gain than placebo), BMI, and waist circumference. Betahistine did not decrease weight or BMI in patients treated with other antipsychotics. There was also no effect of betahistine on preventing weight or BMI gain in the total combined sample of all subjects. Betahistine did not significantly improve appetite or glucose-lipid measures in either subgroup. There were no significant differences in side-effects or psychopathology changes in the betahistine- vs. placebo-treated patients. CONCLUSIONS: These results suggest that betahistine may potentially be a useful adjunctive drug for decreasing weight gain in patients treated with antipsychotics that are potent histamine antagonists, such as olanzapine or clozapine, but may not be useful for this purpose in patients on other antipsychotic medications. The results justify larger placebo-controlled studies to further confirm these effects before specific recommendations can be made for routine use.


Asunto(s)
Antipsicóticos/efectos adversos , Betahistina/uso terapéutico , Peso Corporal/efectos de los fármacos , Agonistas de los Receptores Histamínicos/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Aumento de Peso/efectos de los fármacos , Adolescente , Adulto , Antipsicóticos/uso terapéutico , Betahistina/farmacología , Índice de Masa Corporal , Peso Corporal/fisiología , Niño , Clozapina/efectos adversos , Clozapina/uso terapéutico , Método Doble Ciego , Femenino , Agonistas de los Receptores Histamínicos/farmacología , Humanos , Masculino , Olanzapina/efectos adversos , Olanzapina/uso terapéutico , Esquizofrenia/sangre , Resultado del Tratamiento , Aumento de Peso/fisiología , Adulto Joven
10.
Front Microbiol ; 9: 389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568286

RESUMEN

Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-ß and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-ß and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-ß and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.

11.
PLoS Pathog ; 13(1): e1006171, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28107544

RESUMEN

Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-ß signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.


Asunto(s)
Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Receptores Notch/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Epidermodisplasia Verruciforme/virología , Células HCT116 , Humanos , Queratinocitos/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas Virales/genética , Fosforilación , Unión Proteica/fisiología , Transducción de Señal , Neoplasias Cutáneas/virología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
12.
Front Hum Neurosci ; 10: 549, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27867352

RESUMEN

The amygdala and the dorsolateral prefrontal cortex (DLPFC) play important roles in "emotion dysregulation," which has a profound impact on etiologic research of generalized anxiety disorder (GAD). The present study analyzed both eyes-open and eyes-closed resting state functional MRI (rs-fMRI) of 43 subjects (21 GAD patients with medicine free and 22 matched healthy controls). The amygdala and the DLPFC were defined as regions of interest (ROI) to analyze functional connectivity (FC) in GAD patients compared with healthy controls. The main findings revealed GAD patients had increased FC between the amygdala and the temporal pole compared to healthy controls, which was found in both eyes-open and eyes-closed rs-fMRI. And altered FC between the ROIs and brain regions that mainly belonged to the default mode network (DMN) were found. These findings suggest that the abnormal FC between the amygdala and the temporal pole may contribute to the pathophysiology of GAD, and provide insights into the current understanding of the emotion dysregulation of anxiety disorders.

14.
J Antimicrob Chemother ; 69(6): 1546-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24500190

RESUMEN

OBJECTIVES: Little to nothing is known about human papillomavirus (HPV) susceptibility to disinfection. HPV is estimated to be among the most common sexually transmitted diseases in humans. HPV is also the causative agent of cervical cancers and other anogenital cancers and is responsible for a significant portion of oropharyngeal cancers. While sexual transmission is well documented, vertical and non-sexual transmission may also be important. METHODS: Using recombinant HPV16 particles (quasivirions) and authentic HPV16 grown in three-dimensional organotypic human epithelial culture, we tested the susceptibility of high-risk HPV to clinical disinfectants. Infectious viral particles were incubated with 11 common clinical disinfectants, appropriate neutralizers were added to inactivate the disinfectant and solutions were filter centrifuged. Changes in the infectivity titres of the disinfectant-treated virus were measured compared with untreated virus. RESULTS: HPV16 is a highly resistant virus; more so than other non-enveloped viruses previously tested. The HPV16 quasivirions showed similar resistance to native virions, except for being susceptible to isopropanol, the triple phenolic and the lower concentration peracetic acid-silver (PAA-silver)-based disinfectant. Authentic virus and quasivirus were resistant to glutaraldehyde and ortho-phthalaldehyde and susceptible to hypochlorite and the higher concentration PAA-silver-based disinfectant. CONCLUSIONS: We present the first disinfectant susceptibility data on HPV16 native virions, which show that commonly used clinical disinfectants, including those used as sterilants in medical and dental healthcare facilities, have no effect on HPV16 infectivity. Policy changes concerning disinfectant use are needed. The unusually high resistance of HPV16 to disinfection supports other data suggesting the possibility of fomite or non-sexual transmission of HPV16.


Asunto(s)
Antivirales/farmacología , Desinfectantes/farmacología , Papillomavirus Humano 16/efectos de los fármacos , Línea Celular , Farmacorresistencia Viral , Humanos , Pruebas de Sensibilidad Microbiana , Factores de Tiempo , Virión/efectos de los fármacos
15.
J Emerg Med ; 46(5): 650-4, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24508112

RESUMEN

BACKGROUND: Soccer continues to gain popularity among youth athletes, and increased numbers of children playing soccer can be expected to result in increased injuries. OBJECTIVE: We reviewed children with soccer injuries severe enough to require trauma activation at our Level I trauma center to determine injury patterns and outcome. Our goal is to raise awareness of the potential for injury in youth soccer. METHODS: A retrospective review was performed using the trauma registry and electronic medical records at a Level I trauma center to identify children (< 18 years old) treated for soccer injury from 1999-2009. Data reviewed include age, gender, mechanism, injury, procedures, and outcome. RESULTS: Eighty-one children treated for soccer injury were identified; 38 (47%) were male. Of these, 20 had injury severe enough to require trauma team activation and 61 had minor injury. Mean age was 14 years old (range 5-17 years, SD 2.3). Lower extremity was the most common site of injury (57%), followed by upper extremity (17%), head (16%), and torso (10%). Mechanisms were: kicked or kneed in 27 patients (33%), collision with another player in 25 (31%), fall in 18 (22%), struck by ball in 10 (12%), and unknown in 1 (1%). Procedures included reduction of fractures, splenectomy, abdominal abscess drainage, and surgical feeding access. Long hospitalizations were recorded in some cases. There were no deaths. CONCLUSION: Although less common, injury requiring prolonged hospital admission and invasive operative procedures exist in the expanding world of youth soccer. With increasing participation in the sport, we anticipate greater numbers of these child athletes presenting with serious injury.


Asunto(s)
Hospitalización , Fútbol/lesiones , Centros Traumatológicos/estadística & datos numéricos , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Estudios Retrospectivos , Estados Unidos/epidemiología
16.
mBio ; 4(6): e00845-13, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24194542

RESUMEN

UNLABELLED: Most DNA viruses associate with, and reorganize, nuclear domain 10 (ND10) bodies upon entry into the host nucleus. In this study, we examine the roles of the ND10 components PML, Sp100, and Daxx in the establishment of human papillomavirus type 18 (HPV18) infection of primary human keratinocytes. HPV18 DNA or HPV18 quasivirus was introduced into primary human keratinocytes depleted of each ND10 protein by small interfering RNA technology, and genome establishment was determined by using a quantitative immortalization assay and measurements of viral transcription and DNA replication. Keratinocyte depletion of Sp100 resulted in a substantial increase in the number of HPV18-immortalized colonies and a corresponding increase in viral transcription and DNA replication. However, Sp100 repressed viral transcription and replication only during the initial stages of viral establishment, suggesting that Sp100 acts as a repressor of incoming HPV DNA. IMPORTANCE: The intrinsic immune system provides a first-line defense against invading pathogens. Host cells contain nuclear bodies (ND10) that are important for antiviral defense, yet many DNA viruses localize here upon cell entry. However, viruses also disrupt, reorganize, and modify individual components of the bodies. In this study, we show that one of the ND10 components, Sp100, limits the infection of human skin cells by human papillomavirus (HPV). HPVs are important pathogens that cause many types of infection of the cutaneous and mucosal epithelium and are the causative agents of several human cancers. Understanding how host cells counteract HPV infection could provide insight into antimicrobial therapies that could limit initial infection.


Asunto(s)
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Papillomavirus Humano 18/inmunología , Queratinocitos/inmunología , Queratinocitos/virología , Antígenos Nucleares/genética , Autoantígenos/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Papillomavirus Humano 18/crecimiento & desarrollo , Humanos
17.
J Virol ; 87(8): 4762-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365452

RESUMEN

Cutaneous ß-human papillomavirus (ß-HPV) E6 proteins inhibit NOTCH signaling by associating with the transcriptional coactivator MAML1. NOTCH has tumor suppressor activities in epithelial cells and is activated during keratinocyte differentiation. Here we report that HPV type 8 (HPV8) E6 subverts NOTCH activation during keratinocyte differentiation by inhibiting RBPJ/MAML1 transcriptional activator complexes at NOTCH target DNA. NOTCH inhibition impairs epithelial differentiation and may thus contribute to ß-HPV replication and viral oncogenesis.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Queratinocitos/virología , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/patogenicidad , Receptores Notch/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Células Cultivadas , Humanos , Queratinocitos/fisiología , Factores de Virulencia/metabolismo
18.
Curr Opin Virol ; 2(4): 459-66, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22658985

RESUMEN

A small group of human papillomaviruses (HPVs) cause almost all cervical carcinoma and a significant percentage of other anogenital tract and oral carcinoma. Another group of HPVs causes non-melanoma skin cancers in genetically predisposed or immune suppressed patients upon UV exposure. HPV genome replication requires the host cell's DNA synthesis machinery and HPVs encode proteins that maintain differentiated epithelial cells in a replication competent state. The resulting rewiring of cellular signal transduction circuits triggers several innate cellular tumor suppressor responses that HPVs need to inactivate in order to establish persistent and/or productive infections. This review emphasizes this interplay between virus and the infected host cells and points out biological similarities and differences between different groups of HPVs.


Asunto(s)
Alphapapillomavirus/fisiología , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/virología , Alphapapillomavirus/genética , Animales , Femenino , Regulación de la Expresión Génica , Humanos , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...