Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 361: 142559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852634

RESUMEN

This study focused on investigating the concentrations, compositional profiles, partitioning behaviors and spatial variations of organophosphate esters (OPEs) in the Pearl River (PR), South China Sea (SCS) region, to evaluate their environmental risks. ∑OPEs concentrations in the surface water of the PR ranged from 117.5 to 854.8 ng/L in the dissolved phase and from 0.5 to 13.3 ng/L in the suspended particulate matter. In the surface seawaters of the northern and western parts of the SCS, ∑OPEs concentrations were 1.3-17.6 ng/L (mean: 6.7 ± 5.2) and 2.3-24.4 ng/L (mean: 7.6 ± 5.5), respectively. The percentage of chlorinated OPEs in surface water samples from the PR to the SCS was 79 ± 15%. Tripentyl phosphate (TPeP) (average: 28.3%) and triphenylphosphate (TPhP) (average: 9.6%) exhibited significant particulate fraction. A significant negative correlation (p < 0.05) between salt concentration and OPE congeners in seawater suggested that river runoff predominantly introduced OPEs into the coastal waters of the SCS. The findings also showed higher levels of OPEs in the PR and estuary than in offshore waters. The OPE loading from the PR into the SCS was estimated to be ∼119 t y-1. The presence of TCEP (RQmax = 2.1), TnBP (RQmax = 0.48) and TPhP (RQmax = 0.3) in PR water samples pose a high risk to aquatic organisms, whereas OPEs (RQ < 0.1) in SCS water samples do not pose a threat to aquatic organisms. This research emphasizes the environmental fate and impact of OPEs on surface waters of the PR and SCS.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Organofosfatos , Ríos , Agua de Mar , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Organofosfatos/análisis , Agua de Mar/química , Ésteres/análisis , Medición de Riesgo
2.
Sci Total Environ ; 905: 166974, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37699479

RESUMEN

Although polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) have been recorded worldwide, information on their presence in the Eastern Indian Ocean (EIO), especially south of 10°S, remains limited. We investigated the distribution and depositional fluxes of PAHs and OCPs, and the major sources and ecological risks of PAHs in EIO surface sediments from the Central Indian Ocean (CIOB) and Wharton Basin (WB). The concentration of Σ18 PAHs and ∑10 OCPs had an average value (± SD) of 138.4 ± 52.34 and 0.8 ± 0.20 ng g-1, respectively. PAHs may mainly affected by traffic emission and biomass and wood combustion. Persistent organic pollutant accumulation rate (PAR) and depositional flux (DF) values showed that abundant PAHs might lost during top-down transport. The low trans- chordane (CHL)/cis-CHL ratio and PAR of OCPs may indicated few OCPs were inputted into the EIO recently. The results of binary isotope mixing modeling indicate the predominance of marine organic matter (MOM) in total organic carbon (TOC) of sediments. Fluoranthene (Flour) and pyrene (Py) might have potential biological effects in the EIO. The study provided background values for PAHs and OCPs in the Indian Ocean, and preliminarily revealed the fate of POPs in the open oceans.

3.
Environ Sci Technol ; 57(30): 11195-11205, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459505

RESUMEN

Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑7PAEs ranged from 2.84 to 24.3 ng/m3 with a mean of 9.67 ± 5.86 ng/m3 in air and from 0.96 to 8.35 ng/L with a mean of 3.05 ng/L in seawater. Net air-to-seawater deposition dominated air-sea exchange fluxes of DiBP, DnBP, DMP, and DEP, while strong water-to-air volatilization was estimated for bis(2-ethylhexyl) phthalate (DEHP). The estimated net atmospheric depositions were 3740 t/y for the sum of DMP, DEP, DiBP, and DnBP, but DEHP volatilized from seawater to air with an average of 900 t/y. The seasonally changing monsoon circulation, currents, and cyclones occurring in the Pacific can significantly influence the concentration of PAEs, and alter the direction and magnitude of air-sea exchange and particle deposition fluxes. Consequently, the dynamic air-sea exchange process may drive the transport of PAEs from marginal seas and estuaries toward remote marine environments, which can play an important role in the environmental transport and cycling of PAEs in the global ocean.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Dibutil Ftalato , Ésteres , China
4.
J Environ Sci (China) ; 125: 524-532, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375935

RESUMEN

The study of atmospheric polycyclic aromatic hydrocarbons (PAHs) in northeastern Tibetan Plateau with fragile ecological environment and complex atmospheric circulation system is blank. To understand the characteristics and sources of persistent organic pollutants in the atmosphere of the northeastern Tibetan Plateau, we monitored levels in the central Qilian Mountain. From 2016 to 2017, we collected 45-pair (particle + gas) samples using active air samplers to investigate the sources, transport paths, and their influencing factors. Sources of PAHs were analysed with a source diagnostic model, and atmospheric transport paths were calculated. The concentration range for ∑15PAHs was 439-4666 pg/m3, and the average was 2015 pg/m3. The PAHs in central Qilian Mountain are mainly low molecular weight (LMW) PAHs. Winter concentrations of PAHs were higher than those in summer. The transport of PAHs is mainly affected by westerlies, and there are seasonal differences. Source analysis showed that PAHs mainly came from coal and biomass combustion and vehicle emissions, with seasonal differences. This study clarifies the concentration and seasonal variation of PAHs in the northern Tibetan Plateau, which is conducive to understanding the atmospheric transport process and fate of pollutants. The background site of Qilian Mountains located in the Silk Road economic belt has the value and significance of long-term observation of pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Contaminantes Atmosféricos/análisis , Tibet , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , China , Material Particulado/análisis
5.
Sci Total Environ ; 835: 155376, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35461927

RESUMEN

The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.


Asunto(s)
Clima Frío , Contaminantes Ambientales , Regiones Árticas , Atmósfera , Monitoreo del Ambiente , Contaminantes Ambientales/análisis
6.
Environ Sci Technol ; 56(7): 4199-4209, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302762

RESUMEN

Persistent organic pollutants (POPs) have received significant and ongoing attention. To establish favorable regulatory policies, it is vital to investigate the occurrence, source, and budgets of POPs worldwide. POPs including phthalic acid esters (PAEs), organophosphate esters (OPEs), brominated flame retardants (BFRs), and highly chlorinated flame retardants (HFRs) have not yet been examined in the Eastern Indian Ocean (EIO). In this study, the distribution of POPs has been investigated from surface sediments with the depth of 4369-5742 m in the Central Indian Ocean Basin (CIOB) and Wharton Basin (WB) of EIO. The average (±SD) concentrations of ∑11PAEs, ∑11OPEs, ∑4 BFRs, and ∑5HFRs were 1202.0 ± 274.36 ng g-1 dw, 15.3 ± 7.23 ng g-1 dw, 327.6 ± 211.74 pg g-1 dw, and 7.9 ± 7.45 pg g-1 dw, respectively. The high abundance of low-molecular-weight (LMW) PAEs, chlorinated OPEs, LMW BDEs, and anti-Dechlorane Plus indicated the pollution characteristics in the EIO. Correlation analysis demonstrated that LMW compounds may be derived from the high-molecular-weight compounds. The monsoon circulation, currents, and Antarctic Bottom Water may be the main drivers. POP accumulation rate, depositional flux, and mass inventory in the Indian Ocean were also estimated.


Asunto(s)
Retardadores de Llama , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Retardadores de Llama/análisis , Océano Índico , Organofosfatos/análisis , Contaminantes Orgánicos Persistentes , Contaminantes Químicos del Agua/análisis
7.
Environ Pollut ; 300: 118930, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124121

RESUMEN

The coastal megacity Shanghai is located in the center of the Yangtze River Delta, a dominant flame retardants (FRs) production region in China, especially for organophosphate esters (OPEs). This prompted us to investigate occurrence and seasonal changes of atmospheric OPEs in Shanghai, as well as to evaluate their sources, environmental behavior and fate as a case study for global coastal regions. Atmospheric gas and particle phase OPEs were weekly collected at two coastal sites - the emerging town Lingang New Area (LGNA), and the chemical-industry zone Jinshan Area (JSA) from July 2016-June 2017. Total atmospheric concentrations of the observed OPEs were significantly higher in JSA (median of 1800 pg m-3) than LGNA (median of 580 pg m-3). Tris(1-chloro-2-propyl) phosphate (TCPP) was the most abundant compound, and the proportion of three chlorinated OPEs were higher in the particle phase (55%) than in the gas phase (39%). The year-round median contribution of particle phase OPEs was 33%, which changed strongly with seasons, accounting for 10% in summer in contrast to 62% in winter. Gas and particle phase OPEs in JSA exhibited significant correlations with inverse of temperature, respectively, indicating the importance of local/secondary volatilization sources. The estimated fluxes of gaseous absorption were almost 2 orders of magnitude higher than those of particle phase deposition, which could act as sources of organic phosphorus to coastal and open ocean waters.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , China , Ésteres , Retardadores de Llama/análisis , Organofosfatos , Estaciones del Año
8.
Environ Pollut ; 292(Pt A): 118255, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600061

RESUMEN

Seven organophosphate esters (OPEs) in atmospheric particles and surface seawater were observed during a cruise in the western South China Sea (SCS) in 2014. The median concentrations of ∑OPEs were 688 pg/m3 and 5.55 ng/L for particle and seawater samples, respectively. Total OPEs were dominated by tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP). The spatial distribution of OPEs indicates that the OPEs in particle phase were mainly influenced by the air masses originating from China, Indochina Peninsula and Malay Archipelago, showing the significant contribution of anthropogenic sources from these regions. Significant positive correlations between Tri-n-butylphosphate (TnBP) and organic carbon (P < 0.05) in particle phase over the western SCS suggests that it might be a potential tracer for the source regions of Indochina Peninsula and Malay Archipelago. The spatial distribution of OPEs in seawater was contributed by freshwater inputs associating with variations of human activities as well as salinity. Seawater pollution levels of OPEs in the eastern coast of Vietnam were increased compared to those measured in the northern SCS. The loadings of ∑OPEs transported to the vast area of western SCS vias atmospheric deposition and air-seawater gas exchange were estimated to be 59 tons/year and 105 tons/year, respectively. This work highlights the importance of transport processes and air-seawater interface behavior of OPEs in the oceanic area.


Asunto(s)
Retardadores de Llama , China , Monitoreo del Ambiente , Ésteres , Retardadores de Llama/análisis , Humanos , Organofosfatos , Agua de Mar
9.
Sci Total Environ ; 806(Pt 2): 150673, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597544

RESUMEN

The South China Sea (SCS), surrounded by developing countries/regions with a huge consumption of flame retardants, is generally contaminated by organophosphate esters (OPEs). However, studies on the occurrence, deposition and long-range atmospheric transport (LRAT) process over the SCS of OPEs compounds are still limited. In this work, 10 OPEs were measured in 100 atmospheric samples collected from Yongxing Island (YXI) in the SCS. The total OPEs concentrations ranged from 1508 to 1968 pg/m3 with 28.6-1416.9 pg/m3 in gas and 95.2-1066.2 pg/m3 in particle partition. The three chlorinated OPEs are present at higher concentrations than the other seven non-chlorinated OPEs. Most OPEs had clear seasonal variations that followed the order: spring>summer≈winter>autumn except for tri-isobutyl phosphate (TIBP) and tris-(2-ethylhexyl) phosphate (TEHP). The particle-bound fraction of the total OPEs had little seasonal variations with a mean value of 0.35. Comparing J-P model and Koa model, it was found that the gas/particle partition in the study area was in non-equilibrium condition. LRAT, controlled by seasonal wind direction, was the predominated factor that led to the seasonal variations of OPEs on YXI. The average daily deposition flux of total OPEs was 13.0 ng/m2 with an annual total deposition of 15.06 g.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , China , Ésteres , Retardadores de Llama/análisis , Organofosfatos , Estaciones del Año
10.
J Environ Sci (China) ; 98: 103-108, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33097140

RESUMEN

Trace metal (Cr, Ni, Cu, Zn, Cd and Pb) exposures, distribution and bioaccumulation were investigated in marine organisms from Guangdong coastal regions, South China. The results showed that all of the selected metals were observed in marine organisms with a predomination of Cu and Zn. The metal exposure levels exhibited obvious variations between species with the decreasing order of crab>shellfish>shrimp>fish. The higher metals enrichment seen in shellfish and crab species primarily attributed to their living habits and the higher sediment background values of trace metals. Endpoint bioaccumulation factor (BAFfd) was used to characterize the bioaccumulation potentials of marine organisms to trace metals, of which Cu and Zn were the most accumulated elements. The exposure of trace metals in the cultured organisms was far lower than those in wild marine organisms, which is probably due to the effect of growth dilution. Comparisons with previous studies demonstrated that the concentration profiles of most trace metals declined over the last one to two decades, except Cu, that increased indistinctively.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Bioacumulación , China , Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
11.
J Environ Sci (China) ; 97: 194-199, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32933736

RESUMEN

Eighteen polycyclic aromatic hydrocarbons (PAHs) were detected in benthos collected onboard the 'Snow Dragon' in the Northern Bering Sea Shelf and Chukchi Sea Shelf during the 6th Chinese National Arctic Research Expedition (CHINARE 2014). Σ18PAHs for all biota samples ranged from 34.2 to 128.1 ng/g dry weight (dw), with the highest concentration observed in fish muscle (Boreogadus saida) samples close to St. Lawrence Island. The PAH composition pattern was dominated by the presence of lighter 3 ring (57%) and 2 ring (28%) PAHs, indicating oil-related or petrogenic sources as important origins of PAH contamination. Concentrations of alkyl-PAHs (1-methylnaphthalene and 2-methylnaphthalene) were lower than their parent PAH (naphthalene) in all biological tissue, and their percentage also decreased significantly (p<0.05) compared with those in the corresponding sediment. There were no significant relationships between PAH concentrations and trophic levels, which is possibly due to the combined results of the complex benthic foodweb in the subarctic/Arctic shelf region, as well as a low assimilation/effective metabolism for PAHs. According to toxic potency evaluation results from TCDD toxic equivalents (TEQs) and BaP-equivalent (BaPE) values, whelk (Neptunea heros) and starfish (Ctenodiscus crispatus) are two macroinvertebrate species showing relatively higher dioxin-like toxicity and carcinogenic risk.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Regiones Árticas , Monitoreo del Ambiente , Sedimentos Geológicos
12.
Sci Total Environ ; 741: 140200, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32599399

RESUMEN

Concentrations of 9 organophosphate esters (OPEs), 16 perfluoroalkylated substances (PFASs) and 17 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface snow samples collected at Dome C on the Antarctic Plateau in summer 2016. Tris(1-chloro-2-propyl) phosphate (TCPP), tris-(2-chloroethyl) phosphate (TCEP) and tri-n-butylphosphate (TnBP) were the dominant compounds of OPEs, with mean concentrations of 8157 ± 4860, 1128 ± 928 and 1232 ± 1147 pg/L. Perfluorooctanoic acid (PFOA, mean: 358 ± 71 pg/L) was the dominant compound of PFASs, and following by perfluoro-n-hexanoic acid (PFHxA, mean: 222 ± 97 pg/L), perfluoro-n-heptanoic acid (PFHpA, 183 ± 60 pg/L) and perfluoro-n-pentanoic acid (PFPeA, 175 ± 105 pg/L). 2-(Heptafluoropropoxy)propanoic acid (HFPO-DA, mean: 9.2 ± 2.6 pg/L) was determined in the Antarctic for the first time. Significantly positive correlations were observed between HFPO-DA and the short-chain PFASs, implying they have similar emission sources and long-range transport potential. High levels of 2-methylnaphthalene and 1-methylnaphthalene, as well as the ratios of PAH congeners indicated PAHs were attributable mostly to combustion origin. Occurrence and profiles of the indicators of OPEs, PFASs and PAHs, as well as air mass back-trajectory analysis provided direct evidences of human activities on Concordia station and posed obvious impacts on local environments in the Antarctic. Nevertheless, the exchange processes among different environmental matrices may drive the long-range transport and redistribution of the legacy and emerging Organic contaminants from coast to inland in the Antarctic.

13.
Sci Total Environ ; 737: 139535, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32526564

RESUMEN

An international sampling campaign was carried out to comprehensively investigate the occurrence of polycyclic aromatic hydrocarbons (PAHs) in the marine sediments from the European Baltic and North Seas, Chinese Bohai and Yellow Seas. The concentrations of ∑18PAHs in the samples from these four seas were in the range of 0.91-5361 ng/g dry weight (dw), 0.46-227 ng/g dw, 25.0-308 ng/g dw and 4.3-659 ng/g dw, respectively. 4-rings PAHs, e.g., fluoranthene, pyrene and benzo(b)fluoranthene, were commonly the dominant compounds in all the samples. The PAH sources were identified via composition patterns, diagnostic ratios, principal component analysis (PCA) and positive matrix factorization (PMF). Coal combustion, vehicular emission, coke plant and petroleum residue were apportioned as the main sources in these marine sediments. However, through PMF modeling, different contributions of these sources were quantified to the deposited PAHs in the seas, suggesting distinct anthropogenic impacts on the adjacent marine system. It is note-worthy that biomass combustion may not be the main source of PAHs in the majority of sediments from these seas. This was evidenced by the ratios of naphthalene against its methylated derivatives (i.e. 1-,2-methylnaphthalenes) other than the composition pattern in the samples, of which the approach is in prospect of developing in future studies.

14.
Talanta ; 216: 120926, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32456892

RESUMEN

Bioimaging probes for monitoring intracellular reactive oxygen species have important implications for cell biology research. Herein, we developed peptide-capped silver/gold nanoclusters (peptide@Ag/Au NCs) for lysosome-targeted imaging of hypochlorite (ClO-). The peptide@Ag/Au NCs were synthesized via a one-pot method using peptide as both a template and a reducing agent. The fluorescence intensity and absolute quantum yield of peptide@Ag/Au NCs were much higher than those of peptide-capped gold nanoclusters and silver nanoclusters. In the presence of ClO-, the fluorescence of peptide@Ag/Au NCs was quenched, accompanied by a redshift due to ClO--induced oxidation of the peptide ligand and decreased Ag content in Ag/Au NCs. The relative fluorescence intensity F0/F had favourable linearity for ClO- concentrations in the range 0.1-100 µmol/L (R2 = 0.9954), with a detection limit (LOD) of 80 nmol/L. The lysosome-targeted peptide@Ag/Au NCs were applied to detect ClO- in lysosomes in living cells via fluorescence imaging.


Asunto(s)
Fluorescencia , Ácido Hipocloroso/análisis , Lisosomas/química , Nanopartículas del Metal/química , Imagen Óptica , Péptidos/química , Oro/química , Células Hep G2 , Humanos , Microscopía Fluorescente , Plata/química , Células Tumorales Cultivadas
15.
Sci Total Environ ; 653: 792-800, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759605

RESUMEN

Phthalate esters (PEs) are a class of synthetic chemicals that have been widely used as plasticizers in industrial products and households. The occurrence of PEs in the marine environment has been a concern for many years because of their adverse impacts on marine organisms and human health. In this study, six major PEs, i.e. diethyl phthalate (DEP), di­isobutyl phthalate (DiBP), di­n­butyl phthalate (DnBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP) and di­(2­ethylhexyl) phthalate (DEHP), were analyzed in sediment samples collected in the Bohai and Yellow seas. The sum concentrations of the six PEs ranged from 1.4 to 24.6 ng/g and the average was 9.1 ng/g. The highest concentrations of PEs in the sediment samples were those of DEHP with a median concentration of 3.77 ng/g, followed by DiBP (median, 1.60 ng/g), DnBP (0.91 ng/g), DEP (0.32 ng/g), BBP (0.03 ng/g) and DCHP (0.01 ng/g). Generally, concentrations of PEs in the Bohai Sea are higher than those in the Yellow Sea. The varying spatial distributions of the individual PEs can be the result of discharge sources, regional ocean circulation patterns, and mud areas in the Bohai and Yellow seas. Significant positive correlations were found between total organic carbon content and the concentrations of DiBP, DnBP, and DEHP. It is estimated that the inventories of the ∑6PEs were 20.73 tons in the Bohai Sea and 65.87 tons in the Yellow Sea. Both riverine discharge and atmospheric deposition are major input sources for the PE sedimentation, while massive plastic litter and microplastics sinking to the ocean floor can directly release PEs into sediment. This study provides an appropriate data set for the assessment of the risk of PEs to the marine ecosystem.

16.
Sci Total Environ ; 615: 1305-1311, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29751435

RESUMEN

Concentrations and distribution characteristics of organophosphate esters (OPEs) in surface sediment samples were analyzed and discussed for the first time in the open Bohai Sea (BS) and Yellow Sea (YS). Three halogenated OPEs [tris-(2-chloroethyl) phosphate (TCEP), tris-(1-chloro-2-propyl) phosphate (TCPP), and tris-(1,3-dichloro-2-propyl) phosphate (TDCPP)] and five non-halogenated OPEs [tri-isobutyl phosphate (TiBP), tri-n-butyl phosphate (TnBP), tripentyl phosphate (TPeP), triphenyl phosphate (TPhP) and tris-(2-ethylhexyl) phosphate (TEHP)] were detected in this region. The concentrations of eight OPEs in total (Σ8OPEs) ranged from 83 to 4552pgg-1dry weight (dw). The halogenated OPEs showed higher abundances than the non-halogenated ones did, with TCEP, TCPP, and TEHP the main compounds. Generally, concentrations of OPEs in the BS were higher than those in the YS. Riverine input (mainly the Changjiang Diluted Water (CDW)) and deposition effect in the mud areas might have influenced the spatial distributions of OPEs. Correlation between OPE concentrations and total organic carbon (TOC) indicated TOC was an effective indicator for the distribution of OPEs. Inventory analysis of OPEs implied that sea sediment might not be the major reservoir of these compounds.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama/análisis , Plastificantes/análisis , Contaminantes Químicos del Agua/análisis , China , Sedimentos Geológicos/química , Organofosfatos/análisis
17.
Sci Total Environ ; 610-611: 412-418, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810150

RESUMEN

9H-carbazole is generated from incomplete combustion of diverse fossil fuels and biomass, in tobacco smoke and from industrial processes, while halogenated carbazoles have natural and anthropogenic sources. We analyzed 9H-carbazole and 14 halogenated carbazoles in dust samples from 14 schools, 13 daycare centers, and 13 residences, as well as 5 indoor air samples from residences in Munich, Germany. Overall, we present first data of various carbazoles in different indoor environments without visible combustion sources. The median (95th percentile) values of the halogenated analytes mainly detected in the entire study group were 10.3ng/g (308ng/g) for 9H-carbazole, 13.3ng/g (735ng/g) for 3,6-dichloro-9H-carbazole, 6.2ng/g (159ng/g) for 1,3,6-tribromo-9H-carbazole, and 1.2ng/g (21.1ng/g) for 2,7-dibromo-9H-carbazole. For most of the target analytes, the highest concentrations were observed in dust samples from schools, and the lowest were found in residences. In the air samples, all analytes were found only at low levels, with median values of 7.7pg/m3 for 9H-carbazole and 6.1pg/m3 for 2,3,6,7-tetrachloro-9H-carbazole. For 9H-carbazole, "typical" and "high" non-dietary intake of children through dust ingestion using median and 95th percentile values were calculated to be 0.03ng/kg b.w. and 1.1ng/kg b.w. daily, respectively. Due to limited toxicological information and exposure data for other relevant pathways (e.g., dietary intake), the risk assessment is inconclusive. Nevertheless, there are indications that 9H-carbazole has carcinogenic properties and that halogenated carbazoles have dioxin-like toxicities. Therefore, further research is essential.

18.
Environ Sci Technol ; 52(1): 89-97, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29185734

RESUMEN

Nine organophosphate esters (OPEs) were investigated in air samples collected over the Bohai and Yellow Seas (East Asia) during a research cruise between June 28 and July 13, 2016. These same OPEs were quantified at a research site (North Huangcheng Island, NHI) in the middle of the Bohai Strait from May 16, 2015, to March 21, 2016. The median total OPE (ΣOPE) concentration over the Bohai and Yellow Seas was 280 pg/m3. Tris(1-chloro-2-propyl) (TCPP) was the most abundant OPE, followed by tris(2-chloroethyl) phosphate (TCEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP). Particle-bound OPEs accounted for 51 ± 21% of the total OPEs. On NHI, the median ΣOPE concentration was 210 pg/m3, and the average particle-bound fraction was 82 ± 17%. For samples collected on NHI, significant negative linear correlations were found between the gaseous OPEs and 1/T (T: temperature (K)) (except TDCP, TPeP, and TCP). Among the 79 investigated samples, significant correlations between the measured OPE gas/particle partitioning coefficients (Kp,m) and subcooled liquid pressure (PL◦) (p < 0.05) were found for only 14 samples, suggesting that OPEs have low potential to achieve equilibrium or ascribe to the artificial sampling. The annual dry deposition input of OPEs into the Bohai and Yellow Seas is estimated to be 12 tons/year.


Asunto(s)
Ésteres , Retardadores de Llama , China , Monitoreo del Ambiente , Asia Oriental , Océanos y Mares , Organofosfatos , Estaciones del Año
19.
Sci Total Environ ; 616-617: 1505-1512, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29089130

RESUMEN

Chemical pollution in the microplastics has been concerned worldwide as pollutants might potentially transfer from the environment to living organisms via plastics. Here, we investigate organophosphorus esters (OPEs) and phthalic acid esters (PAEs) in the beached microplastics collected from 28 coastal beaches of the Bohai and Yellow Sea in north China. The analyzed microplastics included polyethylene (PE) pellets and fragments, polypropylene (PP) flakes and fragments and polystyrene (PS) foams. The tris-(2-chloroethyl)-phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP) and di-(2-ethylhexyl) phthalate (DEHP) were the three predominant compounds found overall. The maximum Σ4 OPEs concentration was 84,595.9ngg-1, almost three orders of magnitude higher than the maximum Σ9 PAEs concentration. The PP flakes and PS foams contained the highest concentrations of the additives in contrast to the PE pellets which contained the lowest. The high concentration level of carcinogenic chlorinated OPEs and DEHP with endocrine disrupting effects implied the suggested potential hazards to coastal organisms. Spatial differences and compositional variation of the additives among the different microplastics suggests different origins and residence times in the coastal environment. This indicates that the characteristics of chemical additives might be a useful approach when tracing sources of microplastics in the environment.

20.
Environ Pollut ; 227: 498-504, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28494402

RESUMEN

Eighteen polycyclic aromatic hydrocarbons (PAHs) were measured in surficial sediments along a marine transect from the North Pacific into the Arctic Ocean. The highest average Σ18PAHs concentrations were observed along the continental slope of the Canada Basin in the Arctic (68.3 ± 8.5 ng g-1 dw), followed by sediments in the Chukchi Sea shelf (49.7 ± 21.2 ng g-1 dw) and Bering Sea (39.5 ± 11.3 ng g-1 dw), while the Bering Strait (16.8 ± 7.1 ng g-1 dw) and Central Arctic Ocean sediments (13.1 ± 9.6 ng g-1 dw) had relatively lower average concentrations. The use of principal components analysis with multiple linear regression (PCA/MLR) indicated that on average oil related or petrogenic sources contributed ∼42% of the measured PAHs in the sediments and marked by higher concentrations of two methylnaphthalenes over the non-alkylated parent PAH, naphthalene. Wood and coal combustion contributed ∼32%, and high temperature pyrogenic sources contributing ∼26%. Petrogenic sources, such as oil seeps, allochthonous coal and coastally eroded material such as terrigenous sediments particularly affected the Chukchi Sea shelf and slope of the Canada Basin, while biomass and coal combustion sources appeared to have greater influence in the central Arctic Ocean, possibly due to the effects of episodic summertime forest fires.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Regiones Árticas , Canadá , Carbón Mineral/análisis , Sedimentos Geológicos/análisis , Modelos Lineales , Naftalenos , Océanos y Mares , Análisis de Componente Principal , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...