Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38539910

RESUMEN

Aging is not only a key internal cause of age-related diseases in humans but also poses a threat to the productivity of farm animals with longer breeding cycles, such as laying chickens. Various measures were taken to prolong the laying period by reducing oxidative stress to improve poultry ovarian functions. Within the mitochondria, SIRT3, a member of the Sirtuin family, plays an important role in post-translational modifications and the regulation of protein activities involved in energy metabolism and oxidative response. This study aimed to investigate the alleviating effect of a bioactive lignan Honokiol (HKL) on oxidative stress in aging chicken ovaries in order to retard decline in egg production. The results showed that HKL treatment restored the abnormal balance between cell proliferation and apoptosis, and it enhanced the antioxidant capacity of the H2O2-induced small white follicles (SWFs) by activating the SIRT3/AMPK pathway. Moreover, HKL significantly increased total egg production, the number of yellow follicles, and the mRNA expression of yolk synthesis and deposition-related genes, serum estrogen, and antioxidant levels. These findings suggest that HKL holds promise in enhancing the egg productivity of aging laying chickens by promoting yolk deposition and reducing ovarian oxidative stress.

2.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474379

RESUMEN

With the increase in the age of laying chickens, the aging of follicles is accelerated, and the reproductive ability is decreased. Increased oxidative stress and mitochondrial malfunction are indispensable causes of ovarian aging. In this study, the physiological condition of prehierarchical small white follicles (SWFs) was compared between D280 high-producing chickens and D580 aging chickens, and the effect of a plant-derived flavonoid nobiletin (Nob), a natural antioxidant, on senescence of SWFs granulosa cells (SWF-GCs) was investigated. The results showed that Nob treatment activated cell autophagy by activating the AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT1) pathways in D-galactose (D-gal)-generated senescent SWF-GCs, restoring the expression of proliferation-related mRNAs and proteins. In addition, the expression of inflammation-related protein NF-κB was significantly enhanced in aging GCs that were induced by D-gal. Nob supplementation significantly increased the antioxidant capacity and decreased the expression of several genes associated with cell apoptosis. Furthermore, Nob promoted activation of PINK1 and Parkin pathways for mitophagy and alleviated mitochondrial edema. Either the AMPK inhibitor dorsomorphin (Compound C) or SIRT1 inhibitor selisistat (EX-527) attenuated the effect of Nob on mitophagy. The protective effect of Nob on natural aging, GC proliferation, and elimination of the beneficial impact on energy regulation of naturally aging ovaries was diminished by inhibition of Nob-mediated autophagy. These data suggest that Nob treatment increases the expression of mitophagy-related proteins (PINK1 and Parkin) via the AMPK/SIRT1 pathways to prevent ovarian aging in the laying chickens.


Asunto(s)
Antioxidantes , Pollos , Flavonas , Femenino , Animales , Antioxidantes/metabolismo , Pollos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/metabolismo , Estrés Oxidativo , Envejecimiento , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cell Cycle ; 22(19): 2142-2160, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950881

RESUMEN

The mucosal renewal, which depends on the intestinal stem cell (ISC) activity, is the foundation of mucosal repairment. Importantly, activation of reserve ISCs (rISCs) plays a vital role in initiating mucosal repair after injury. However, the underlying regulatory mechanism of rISCs activation in chickens remains unclear. In this study, immediately after lipopolysaccharide (LPS) challenge, mitochondrial morphological destruction and dysfunction appeared in the crypt, accompanied by decreased epithelial secretion (decreased Muc2 mRNA abundance and LYSOZYME protein level). However, immediately after mucosal injury, the mucosal renewal accelerated, as indicated by the increased BrdU positive rate, proliferating cell nuclear antigen (PCNA) protein level and mRNA abundance of cell cycle markers (Ccnd1, Cdk2). Concerning the ISCs activity, during the early period of injury, there appeared a reduction of active ISCs (aISCs) marker Lgr5 mRNA and protein, and an increasing of rISCs marker Hopx mRNA and protein. Strikingly, upon LPS challenge, increased mRNA transcriptional level of Krüppel-like factor 5 (Klf5) was detected in the crypt. Moreover, under LPS treatment in organoids, the KLF5 inhibitor (ML264) would decrease the mRNA and protein levels of Stat5a and Hopx, the STAT5A inhibitor (AC-4-130) would suppress the Lgr5 mRNA and protein levels. Furthermore, the Dual-Luciferase Reporter assay confirmed that, KLF5 would bind to Hopx promoter and activate the rISCs, STAT5A would trigger Lgr5 promoter and activate the aISCs. Collectively, KLF5 was upregulated during the early period of injury, further activate the rISCs directly and activate aISCs via STAT5A indirectly, thus initiate mucosal repair after injury.


Asunto(s)
Pollos , Mucosa Intestinal , Animales , Pollos/genética , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factores de Transcripción/metabolismo , Células Madre/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Vet Res ; 54(1): 104, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946298

RESUMEN

Ruminants play a vital economic role as livestock, providing high-quality protein for humans. At present, 3D-cultured ruminant abomasum and intestinal organoids have been successfully established to study host and pathogen interaction. The rumen is a unique digestive organ of ruminants that occupies 70% of the volume of the digestive tract and its microbiota can decompose lignocellulose to support animal growth. Here we report a method for culturing rumen epithelial organoids. We found that single rumen epithelial cells form self-organized 3D structures representative of typical stratified squamous epithelium, which is similar to rumen epithelium. EGF, Noggin, Wnt3a, IGF-1, and FGF-10 significantly enhanced the seeding efficiency of organoids. Moreover, the inclusion of CHIR-99021, A83-01, SB202190, and Y-27632 is crucial for organoid formation and maintenance. Importantly, we demonstrate that rumen epithelial cells retain their ability to form organoids after passage, cryopreservation, and resuscitation. The rumen epithelial organoids express rumen cell type-specific genes, uptake fatty acids, and generate 2D cultures. In summary, our data demonstrate that it is feasible to establish organoids from single rumen epithelial cells, which is a novel in vitro system that may reduce the use of experimental animals.


Asunto(s)
Células Epiteliales , Rumen , Humanos , Ovinos , Animales , Células Cultivadas , Organoides , Rumiantes
5.
Cell Biol Int ; 47(3): 598-611, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36378583

RESUMEN

Oxidative stress is a major cause of ovarian aging and follicular atresia. There is growing evidence that showed potential roles of rutin in antidiabetic, anti-inflammatory, antitumor, antibacterial and antioxidant, although it is yet unclear what the underlying mechanism is. Here, we looked into the potential effects of rutin on oxidative stress in the prehierarchical small white follicles (SWFs) from 580-day-old (D580) laying chickens. According to the findings, aging D580 layer ferroptosis was much higher than it was for laying hens during the peak period (280-day-old, D280). In both naturally aged and d-gal-induced chicken SWFs, rutin treatment concurrently boosted cell proliferation and prevented apoptosis. In addition, rutin inhibited the increased ferroptosis in aging hens. Meanwhile, rutin markedly suppressed the elevated ferroptosis and descending antioxidant capacity of D280-culture-SWFs from chicken elicited by d-gal. Rutin's activation of the Nrf2/HO-1 pathway hastened the SWFs' verbal battle with oxidative damage and reduced ferroptosis. Furthermore, activation of the ferroptosis signal increased the oxidative damage in SWFs. In conclusion, rutin alleviated oxidative stress that was induced by ferroptosis in aging chicken SWFs through Nrf2/HO-1 pathway. These findings point to a novel mechanism by which rutin protects SWFs from oxidative stress by suppressing ferroptosis, which is presumably a fresh approach to slowing ovarian aging in laying hens.


Asunto(s)
Antioxidantes , Ferroptosis , Femenino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Rutina/farmacología , Pollos/metabolismo , Atresia Folicular , Estrés Oxidativo , Envejecimiento
6.
mSystems ; 7(6): e0090322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36413033

RESUMEN

Currently, the regulation of Lactobacillus on intestinal stem cells (ISCs) attracts broad attention, but their active ingredients and the underlying mechanism are worthy of further study. Previously, host intestinal commensal bacteria were verified to drive the differentiation of ISCs. In this study, the strong bacteriostatic activity of Lactobacillus salivarius and Lactobacillus agilis were illustrated, and the components (supernatant, precipitation) of L. salivarius or L. agilis were further demonstrated to decrease the differentiation of ISCs in vivo. Interestingly, antibiotics feeding decreased ISCs differentiation in vivo as well. However, the administration of L. salivarius supernatant following antibiotics feeding was shown to promote ISCs differentiation dramatically when compared with the antibiotics feeding group, indicating that some active ingredients existed in its supernatant to promote ISCs activity. Strikingly, in vitro, the treatment of L. salivarius supernatant was further confirmed to promote the intestinal organoids' size, budding, and LGR5 expression. Next, the metabolomics analysis of Lactobacilli' supernatants suggested that succinate might be a crucial metabolite to promote ISCs activity. Further, the succinate treatment in vitro (1000 µM) and in vivo (50 mM) was confirmed to enhance the expression of LGR5 and PCNA. SLC13A3 (a sodium/dicarboxylate cotransporter) was detected in the intestinal organoids and demonstrated to transport succinate into ISCs, as confirmed by the contact of FITC-succinate with ISCs nucleus. Subsequently, high mitochondrial membrane potential and reactive oxygen species levels appeared in the intestinal organoids upon succinate treatment. Collectively, the promotion of L. salivarius on ISCs activity is associated with succinate-induced mitochondrial energy metabolism. IMPORTANCE In our previous study, Lactobacillus salivarius and Lactobacillus agilis were demonstrated to regulate intestinal stem cell activity in hens, but their active ingredients and the underlying mechanism remain unclear. In this study, L. salivarius supernatant was shown to directly promote intestinal stem cell activity. Furthermore, the succinate (a critical metabolite of L. salivarius) was screened out to promote intestinal stem cell activity. Moreover, the succinate was confirmed to enter intestinal stem cells and induce high mitochondrial energy metabolism, finally promoting intestinal stem cell activity. These findings will advance uncovering the mechanism by which Lactobacillus regulate intestinal stem cell activity in chickens.


Asunto(s)
Ligilactobacillus salivarius , Animales , Femenino , Mucosa Intestinal , Ácido Succínico/metabolismo , Pollos/microbiología , Células Madre/metabolismo , Antibacterianos/metabolismo , Metabolismo Energético
7.
Thorac Cancer ; 13(23): 3295-3303, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36218023

RESUMEN

BACKGROUND: The application of immune checkpoint inhibitors (ICIs) represents a breakthrough in the current landscape for the treatment of extensive-stage small-cell lung cancer (ES-SCLC), but the real-world outcome is limited. This study aimed to investigate the treatment options and efficacy evaluation of first-line, second-line, and subsequent-line immunotherapy in routine practice. METHODS: A retrospective analysis of ES-SCLC patients treated with ICIs was conducted between May 2016 and September 2021. Objective response rate, disease control rate, progression-free survival (PFS) and overall survival were assessed between groups to explore the value of ICIs at different treatment time periods. PFS1 and PFS2 were defined as the duration from initial therapy to disease progression or death in first-line or second-line treatment. RESULTS: Ninety-six patients with ES-SCLC were included. PFS1 was prolonged in patients treated with first-line ICIs-combined therapy (median PFS1 7.20 months vs. 5.30 months, hazard ratio [HR] 0.55, 95% confidence interval [CI] 0.36-087, p = 0.0085). For patients who progressed after first-line ICIs treatment (N = 22), PFS1 + PFS2 was longer in the second-line ICIs continuation group with no significant difference (median PFS1 + PFS2 11.27 months vs. 7.20 months, HR 0.45, 95% CI 0.14-1.51, p = 0.19). For patients who experienced a progression event after first-line chemotherapy (N = 50), PFS2 and PFS1 + PFS2 were prolonged in patients who accepted second-line ICIs-combined therapy without significant difference (median PFS2 4.00 months vs. 2.43 months, HR 0.59, 95% CI 0.33-1.05, p = 0.070; median PFS1 + PFS2 11.30 months vs. 8.70 months, HR 0.53, 95% CI 0.29-0.98, p = 0.056). CONCLUSION: First-line ICIs plus chemotherapy should be applied in the clinical practice of ES-SCLC. If patients did not receive ICIs plus chemotherapy in first-line treatment, therapies that include ICIs in second-line treatment should be considered.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Retrospectivos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Inmunoterapia
8.
Poult Sci ; 101(7): 101891, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35561460

RESUMEN

Oxidative stress is an essential inducement in follicle atresia and ovarian aging, resulting in decline in female fecundity. As a natural and effective antioxidant, naringin was investigated to relieve chicken follicle atresia and ovarian aging. First, the cultured small white follicles (SWFs) from D280 hens were pretreated with 0.5 mM naringin for 24 h and then treated with H2O2 for 72 h to establish the oxidative stress model to evaluate the putative attenuating effects of naringin on follicle atresia. Meanwhile, SWFs of D580 hens were treated with naringin for 72 h to examine the attenuating effect on the physiological aging of SWFs. Finally, each hen was fed with naringin at a dose of 50 mg/kg every day to explore the effect of naringin on follicular development and laying performance in D580 hens. Results showed that naringin could rescue the antioxidant capacity decline by increasing the antioxidant-related indexes and expression of antioxidation-associated genes. It could also maintain the homeostasis of SWFs in both the H2O2-induced group and natural physiological aging group. In addition, naringin increased estrogen levels, capacity of antioxidants, and the laying performance in aged laying chickens. The thickness and strength of the eggshell were increased in the naringin-treated group as well. In conclusion, this study showed that naringin is capable of relieving SWFs atresia that was induced by oxidative stress and maintaining the laying performance of aging low-yielding hens by reducing oxidative stress.


Asunto(s)
Pollos , Atresia Folicular , Envejecimiento/fisiología , Animales , Antioxidantes/farmacología , Pollos/fisiología , Femenino , Flavanonas , Peróxido de Hidrógeno/farmacología , Óvulo , Estrés Oxidativo
9.
Dev Biol ; 487: 122-133, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525303

RESUMEN

In females, the establishment of the primordial follicle pool is accompanied by a remarkable programmed oocyte loss for unclear reasons. In this study, the role of autophagy was investigated to serve as a protective mechanism for oocyte survival during chicken folliculogenesis. Inhibition of autophagy by 3-methyladenine (3-MA) led to a remarkable delay in germ cell cyst breakdown that resulted in fewer primordial follicles and retarded sequent follicular development either in vivo or in the ovarian organ culture. Furthermore, the glycolysis level was downregulated in ovaries treated with 3-MA, while Recilisib (a specific activator of Akt) reversed this inhibiting effect of 3-MA on primordial folliculogenesis. Collectively, these data indicate that autophagy functions to maintain germ cell cyst breakdown and primordial follicle assembly by regulating ovarian glycolysis involving Akt signaling in the ovaries of newly-hatched chickens.


Asunto(s)
Pollos , Ovario , Animales , Autofagia/fisiología , Pollos/metabolismo , Femenino , Células Germinativas/metabolismo , Glucólisis , Oocitos , Ovario/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
10.
Cells ; 11(8)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35455970

RESUMEN

The increase in follicular atresia and the decrease in the fecundity of laying hens occur with the aging process. Therefore, the key measure for maintaining high laying performance is to alleviate follicular atresia in the aging poultry. Follicle-stimulating hormone (FSH), as an important pituitary hormone to promote follicle development and maturation, plays an important role in preventing reproductive aging in diverse animals. In this study, the physiological state of the prehierarchical small white follicles (SWFs) and atretic SWFs (ASWFs) were compared, followed by an exploration of the possible capacity of FSH to delay ASWFs' progression in the hens. The results showed that the DNA damage within follicles increased with aging, along with Golgi complex disintegration, cell cycle arrest, increased apoptosis and autophagy in the ASWFs. Subsequently, the ACNU-induced follicular atresia model was established to evaluate the enhancing capacity of FSH on increasing cell proliferation and attenuating apoptosis in ASWFs. FSH inhibited DNA damage and promoted DNA repair by regulating the CHK2/p53 pathway. Furthermore, FSH inhibited CHK2/p53, thus, suppressing the disintegration of the Golgi complex, cell cycle arrest, and increased autophagy in the atretic follicles. Moreover, these effects from FSH treatment in ACNU-induced granulosa cells were similar to the treatment by a DNA repair agent AV-153. These results indicate that FSH protects aging-resulted DNA damage in granulosa cells by inhibiting CHK2/p53 in chicken prehierarchical follicles.


Asunto(s)
Hormona Folículo Estimulante , Atresia Folicular , Animales , Pollos/metabolismo , Daño del ADN , Femenino , Hormona Folículo Estimulante/farmacología , Células de la Granulosa/metabolismo , Nimustina/metabolismo , Nimustina/farmacología , Proteína p53 Supresora de Tumor/metabolismo
11.
Front Cell Dev Biol ; 10: 762228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242756

RESUMEN

A significant decrease in poultry egg production occurs due to ovarian aging and autophagy is one of the important factors of ovarian aging that is induced predominantly by oxidative stress. Increasing evidence showed potential roles of plant-derived grape seed proanthocyanidin (GSPs) in protecting ovarian granulosa cells (GCs) from oxidative damage, although the underlying mechanism is still unclear. Here we investigated the possible functions of autophagy involved in the preventive effect of GSPs on oxidative stress in the GCs of ovarian hierarchical follicles of laying chickens. The results showed that increased autophagy was observed in the aging hens (580-day-old, D580) compared with the peak-lay hens (D280). Treatment of GSPs significantly restored the elevated autophagy and decreased viability of cultured D280 chicken GCs that were elicited by hydrogen peroxide. GSPs also suppressed the increased autophagy in the natural aging hens. Similar to the effect of GSPs on GC viability, inhibition of autophagy also showed a protective effect on the decreased viability of GCs under oxidative damage. However, GSPs were not able to provide further protection in GCs that were pretreated with 3-methyladenine (an autophagy inhibitor). In addition to its promoting action on antioxidant capacity, treatment with GSPs increased survival of GCs from autophagy that was caused by oxidative stress through the FoxO1-related pathway. Inhibition of FoxO1 or activation of PI3K-Akt pathway by GSPs increased the confrontation of GCs to oxidative damage and decreased autophagy in GCs. In addition, activation of the SIRT1 signal inhibited the GCs autophagy that was caused by oxidative stress via GSPs-induced deacetylation of FoxO1. These results revealed a new mechanism of GSPs against oxidative stress of GCs via inhibiting FoxO1, which was probably a possible target for alleviating ovarian aging in laying poultry.

12.
Mol Cell Endocrinol ; 543: 111550, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990741

RESUMEN

Autophagy of granulosa cell (GC) may be a supplementary mechanism involved in follicular atresia through cooperating with apoptosis. Leukemia inhibitory factor (LIF) has been shown to promote follicular growth, through the underlying molecular mechanisms remain unclear. Rapamycin, an autophagy inducer, triggered the elevation of GC apoptosis within follicles, and then prevented follicular growth. However, combined treatment with LIF relieved the follicular regression caused by rapamycin, mainly resulting in alleviating the decline of GCs viability and cell autophagic apoptosis, and eventually, promoting follicle development. Further investigation revealed that LIF inhibited the GC autophagic apoptosis by activating PI3K/AKT and Stat3 pathways, reflecting an increase of BCL-2 expression but a decrease in BECN1. Additionally, blocking PI3K/AKT and Stat3 pathways resulted in the reduction of LIF protection against follicular atresia. These findings illustrated that LIF activated the PI3K/AKT and Stat3 signaling pathways to inhibit GC autophagic cell death, and further relieve chicken follicular atresia.


Asunto(s)
Atresia Folicular , Factor Inhibidor de Leucemia , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Pollos , Femenino , Células de la Granulosa/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
13.
Microb Biotechnol ; 15(4): 1235-1252, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34536334

RESUMEN

In poultry, HyLine (HL) Hens are known for their excellent laying performance. However, ZhenNing (ZN) Hens, a native chicken breed in China, are known for their unique flavour. The intestinal mucosa, which is the main organ for nutrient absorption, could affect livestock product quality. In ZN Hens' intestinal mucosa, we found more villus wrinkles, larger villus circumference and higher amino acid transporters mRNA abundance compared with HL Hens. Among three laying periods of ZN Hens, in the intestinal lumen, Lactobacillus salivarius (L. sa.), Lactobacillus agilis (L. ag.) and Lactobacillus aviarius were the predominant species in the laying peak period. Furthermore, multiple-antibiotics feeding in ZN Hens and predominant Lactobacillus feeding in HL Hens suggested that these Lactobacilli could indeed increase villus wrinkles and improve intestinal absorption. In HL Hens, L. sa. + L. ag. treatment could promote organoids budding in vitro, and promote epithelial proliferation in vivo. Collectively, the unique intestinal mucosa morphology in ZN Hens was due to the high abundance of intestinal L. sa. and L. ag. Transplant these Lactobacilli to HL Hens could increase their intestinal probiotics abundance, fine adjust the intestinal stem cell function and promote the epithelial proliferation, in turn, increase villus winkles and mucosal absorption area.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Alimentación Animal/análisis , Animales , Pollos/metabolismo , Dieta , Femenino , Lactobacillus/genética
14.
Appl Microbiol Biotechnol ; 105(23): 8823-8835, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34708278

RESUMEN

Previously, we found that Lactobacillus salivarius, Lactobacillus agilis, and Lactobacillus aviarius were associated with excellent egg nutrition in native chicken. Next, the optimal Lactobacillus combination is worth studying. Here, a total of 120 HyLine hens (30 hens per group contained 3 replicate cells, 10 hens/cell) in the laying peak period were randomly divided into (1) control, (2) L. salivarius + L. agilis, (3) L. salivarius + L. aviarius, and (4) L. agilis + L. aviarius groups, fed with diet only or with corresponding Lactobacilli (108 colony-forming units/hen/day) for 30 days. As a result, L. salivarius + L. agilis feeding could (1) improve egg-laying rate, egg weight, and albumen's amino acid levels; (2) increase Lactobacillus abundance, decrease Escherichia coli abundance, upregulate the tryptophan metabolism pathway-related molecules, and downregulate the primary bile acid biosynthesis pathway-related molecules in intestinal contents; and (3) upregulate oxidative-phosphorylation pathway-related genes, reactive oxygen species levels, and mRNA abundance of Wnt3a, Dll1, Lgr5, CCDN1, and CDK2 in the crypt. Collectively, L. salivarius + L. agilis feeding in hens could improve intestinal microflora and metabolism profile, promote crypt's local energy metabolism and reactive oxygen species levels, and thus enhance Paneth cells and intestinal stem cells activity.Key points• Lactobacilli co-feeding could improve laying performance and egg nutrition.• Lactobacilli co-feeding could improve intestinal microflora and metabolism profile.• Lactobacilli co-feeding could enhance Paneth cells and intestinal stem cells activity.


Asunto(s)
Pollos , Ligilactobacillus salivarius , Animales , Femenino , Lactobacillus , Células Madre
15.
Cancer Biol Med ; 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33960176

RESUMEN

OBJECTIVE: Immune checkpoint inhibitors have revolutionized cancer therapy for multiple types of solid tumors, but as expected, a large percentage of patients do not show durable responses. Biomarkers that can predict clinical responses to immunotherapies at diagnosis are therefore urgently needed. Herein, we determined the associations between baseline gut commensal microbes and the clinical treatment efficiencies of patients with thoracic neoplasms during anti-programmed death protein 1 (PD-1) therapy. METHODS: Forty-two patients with advanced thoracic carcinoma who received anti-PD-1 treatment were enrolled in the study. Baseline and time-serial stool samples were analyzed using 16S ribosomal RNA gene sequencing. Tumor responses, patient progression-free survival, and overall survival were used to measure clinical outcomes. RESULTS: The diversities of the baseline gut microbiota were similar between responders (n = 23) and nonresponders (n = 19). The relative abundances of the Akkermansiaceae, Enterococcaceae, Enterobacteriaceae, Carnobacteriaceae and Clostridiales Family XI bacterial families were significantly higher in the responder group. These 5 bacterial families acted as a commensal consortium and better stratified patients according to clinical responses (P = 0.014). Patients with a higher abundance of commensal microbes had prolonged PFS (P = 0.00016). Using multivariable analysis, the abundance of the commensal consortium was identified as an independent predictor of anti-PD-1 immunotherapy in thoracic neoplasms (hazard ratio: 0.17; 95% confidence interval: 0.05-0.55; P = 0.003). CONCLUSIONS: Baseline gut microbiota may have a critical impact on anti-PD-1 treatment in thoracic neoplasms. The abundance of gut commensal microbes at diagnosis might be useful for the early prediction of anti-PD-1 immunotherapy responses.

16.
Cell Biol Int ; 45(6): 1336-1348, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33675281

RESUMEN

Follicle development is a complex process under strict regulation of diverse hormones and cytokines including transforming growth factor ß (TGF-ß) superfamily members. TGF-ß is pivotal for the regulation of ovarian functions under physiological and pathological conditions. In this study, effect of TGF-ß1 on chicken follicle development was examined through investigating the accumulation and action of collagen, an indispensable member of the extracellular matrix (ECM) involved in this process. The granulosa cells (GCs) and theca cells (TCs) were separated from growing follicles of the laying chicken for treatment of TGF-ß1 and analysis of expression of ECM components and key proteins in intracellular signaling pathways. Results showed that collagen was mainly distributed in the follicular theca layer and was produced with the formation of the granulosa layer during ovarian development. Collagen accumulation increased with follicle growth and treatment of GCs with TGF-ß1 elicited an increased expression of collagen. After production from GCs, collagen was transferred to the neighboring TCs to promote cell proliferation and inhibit apoptosis. Treatment of collagen remarkably increased expression of p-ERK, mitogen-activated protein kinase (MAPK), and p-MAPK, but treatment with hydroxylase inhibitor (to break collagen structure) reversed these alterations. In conclusion, during follicle growth collagen was secreted by GCs under TGF-ß1 stimulation and was subsequently collaboratively transferred to neighboring TCs to increase cell proliferation and thus to promote follicle development via an intercellular cooperative pattern during development of chicken growing follicles.


Asunto(s)
Colágeno/metabolismo , Células de la Granulosa , Folículo Ovárico , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Proliferación Celular , Pollos , Femenino , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/metabolismo
17.
Poult Sci ; 100(2): 615-622, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518114

RESUMEN

The rapid renewal and repair of the intestinal mucosa are based on intestinal stem cells (ISC), which are located at the crypt bottom. Paneth cells are an essential component in the crypt, which served as the niche for ISC development. However, in the chicken, how the function of Paneth cells changes during intestinal inflammation is unclear and is the key to understand the mechanism of mucosal repair. In the present study, 36 HyLine White chickens (7 d of age, n = 6) were randomly divided into 1 control and 5 lipopolysaccharide (LPS) injection groups. The chickens were injected (i.p.) with PBS in the control group, however, were injected (i.p.) with LPS (10 mg/kg BW) in the LPS injection groups, which would be sampled at 5 time points (1 h postinjection [hpi], 2 hpi, 4 hpi, 6 hpi, and 8 hpi). Results showed that tumor necrosis factor-α mRNA transcription in duodenal tissue increased gradually since 1 hpi, peaked at 4 hpi, and then reduced remarkably, indicating that 4 hpi of LPS was the early stage of intestinal inflammation. Meanwhile, the MUC2 expression in duodenal tissue was dramatically reduced since 1 hpi of LPS. The ISC marker, Lgr5 and Bmi1, in the duodenal crypt were reduced from 1 hpi to 4 hpi and elevated later. Accordingly, the hydroethidine staining showed that the reactive oxygen species level, which drives the differentiation of ISC, in the duodenal crypt reduced obviously at 1 hpi and recovered gradually since 4 hpi. The analysis of Paneth cells showed that many swollen mitochondria appeared in Paneth cells at 4 hpi of LPS. Meanwhile, the Lysozyme transcription in the duodenal crypt was substantially decreased since 1 hpi of LPS. However, the Wnt3a and Dll1 in duodenal crypt decreased at 1 hpi of LPS, then increased gradually. In conclusion, Paneth cells were impaired at the early stage of intestinal inflammation, then recovered rapidly. Thus, the ISC activity was reduced at first and recovery soon.


Asunto(s)
Pollos , Gastroenteritis/veterinaria , Células de Paneth/patología , Enfermedades de las Aves de Corral/patología , Animales , Duodeno/citología , Duodeno/patología , Duodeno/ultraestructura , Gastroenteritis/patología , Mucosa Intestinal/patología , Microscopía Electrónica de Transmisión/veterinaria , Células de Paneth/ultraestructura , Distribución Aleatoria , Células Madre/patología
18.
Oxid Med Cell Longev ; 2020: 3648040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294120

RESUMEN

Increased follicular atresia occurs with aging and results in reduced fecundity in laying chickens. Therefore, relieving follicular atresia of aging poultry is a crucial measure to maintain sustained high laying performance. As an antiaging agent, metformin was reported to play important roles in preventing aging in diverse animals. In this study, the physiological state of the prehierarchical follicles in the peak-laying hens (D280) and aged hens (D580) was compared, followed with exploration for the possible capacity of metformin in delaying atresia of the prehierarchical follicles in the aged D580 hens. Results showed that the capacity of yolk deposition within follicles declined with aging, and the point of endoplasmic reticulum- (ER-) mitochondrion contact decreased in the ultrastructure of the follicular cells. Meanwhile, the expression of apoptosis signaling genes was increased in the atretic small white follicles. Subsequently, the H2O2-induced follicular atresia model was established to evaluate the enhancing capacity of metformin on yolk deposition and inhibition of apoptosis in the atretic small white follicles. Metformin inhibited apoptosis through regulating cooperation of the mitochondrion-associated ER membranes and the insulin (PI3K/AKT) signaling pathway. Furthermore, metformin regulated calcium ion homeostasis to relieve ER-stress and inhibited release of mitochondrion apoptosis factors (BAD and caspase). Additionally, metformin activated PI3K/AKT that suppressed activation of BAD (downstream of the insulin signaling pathway) in the atretic follicles. Further, serum estrogen level and liver estrogen receptor-α expression were increased after dietary metformin supplementation in D580 hens. These results indicated that administration of dietary metformin activated the PI3K/AKT and calcium signaling pathway and enhanced yolk deposition to prevent chicken follicular atresia.


Asunto(s)
Envejecimiento/fisiología , Señalización del Calcio/efectos de los fármacos , Atresia Folicular/efectos de los fármacos , Metformina/farmacología , Animales , Caspasas/metabolismo , Pollos/metabolismo , Femenino , Atresia Folicular/fisiología , Células de la Granulosa/metabolismo , Peróxido de Hidrógeno/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Thorac Cancer ; 11(12): 3501-3509, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33075201

RESUMEN

BACKGROUND: While prospective clinical studies on immunotherapy in epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC) with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) are ongoing, this study aimed to investigate the outcomes of immunotherapy combinations in such a population in a real-world setting. METHODS: The clinical data of pretreated EGFR-mutated NSCLC patients who acquired EGFR-TKI resistance and received immunotherapy were retrospectively analyzed in this study. Progression-free survival (PFS) was assessed using the Kaplan-Meier log-rank test, and univariate and multivariate analysis were performed. RESULTS: A total of 31 patients were analyzed in this study. A total of 25 (80.6%) patients received combination immunotherapy. In the univariate analysis, patients who received combination immunotherapy seemingly acquired longer PFS than those who received monotherapy, although there was no significant difference (3.42 months vs. 1.61; P = 0.078; hazard ratio (HR) 0.43, 95% CI: 0.16-1.13). Patients who received antiangiogenic drugs prior to immunotherapy acquired better PFS (3.42 months vs. 1.58; P = 0.027; HR 0.37, 95% CI: 0.15-0.93), while patients with liver metastasis had inferior PFS (2.04 months vs. 3.42; P = 0.031; HR 2.83, 95% CI: 1.05-7.60). Furthermore, multivariate analysis confirmed that the above three factors had independent prognostic value. CONCLUSIONS: The study revealed that immunotherapy combinations are better choices than single-agent regimens in previously treated and EGFR-mutant NSCLC patients with progressive disease. In addition, antiangiogenic drugs administered before immunotherapy might be a favorable prognostic factor, while liver metastasis was associated with a short PFS in this setting. In future, more robust and prospective clinical trial results are expected to guide clinical practice. KEY POINTS: Significant study findings Immunotherapy-based combination therapies are better choices than single-agent regimens in heavily treated EGFR-mutant NSCLC patients. What this study adds Patients without liver metastasis and with prior antiangiogenic drugs obtained more benefit from immunotherapy in this setting.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/farmacología , Receptores ErbB/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/farmacología , Estudios Retrospectivos
20.
Theriogenology ; 157: 418-430, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32871446

RESUMEN

Healthy and efficient development of ovarian follicles largely determines poultry laying performance. In low-yield laying chickens, retarded follicle progression resulted in decreased prehierarchical follicles. In this study the extenuating effect of follicle-stimulating hormone (FSH) on delayed follicular development was investigated in the low-yield chickens. Results showed that FSH administration in vivo accelerated development of prehierarchical follicles, with increased expression of steroidogenic enzymes and follicular angiogenesis through elevating plasma levels of 17ß-estradiol, progesterone, luteinizing hormone and the expression of vascular endothelial growth factor and its receptor as well as angiopoietins. Furthermore, treatment with FSH raised expression of lipid uptake and adipogenesis-related proteins and decreased tight junctions between granulosa cells. Meanwhile, the results of the in vivo studies were confirmed by the in vitro studies as FSH promoted development of the cultured prehierarchical follicles with increased angiogenesis, cell proliferation, steroid hormones synthesis and yolk deposition. These results indicated FSH enhanced follicular development in the low-yield laying chickens involving increased follicular angiogenesis.


Asunto(s)
Pollos , Hormona Folículo Estimulante , Animales , Femenino , Células de la Granulosa , Folículo Ovárico , Progesterona , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA