Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81
1.
Yonago Acta Med ; 67(1): 41-51, 2024 Feb.
Article En | MEDLINE | ID: mdl-38371275

Background: Doxorubicin (Dox) is effective against different types of cancers, but it poses cardiotoxic side effects, frequently resulting in irreversible heart failure. However, the complexities surrounding this cardiotoxicity, especially at sublethal dosages, remain to be fully elucidated. We investigated early cellular disruptions in response to sublethal Dox, with a specific emphasis on the role of phosphorylated calcium/calmodulin-dependent protein kinase II (CaMKII) in initiating mitochondrial dysfunction. Methods: This study utilized the H9c2 cardiomyocyte model to identify a sublethal concentration of Dox and investigate its impact on mitochondrial health using markers such as mitochondrial membrane potential (MMP), mitophagy initiation, and mitochondrial calcium dynamics. We examined the roles of and interactions between CaMKII, dynamin-related protein 1 (Drp1), and the mitochondrial calcium uniporter (MCU) in Dox-induced mitochondrial disruption using specific inhibitors, such as KN-93, Mdivi-1, and Ru360, respectively. Results: Exposure to a sublethal dose of Dox reduced the MMP red-to-green fluorescence ratio in H9c2 cells by 40.6% compared with vehicle, and increased the proportion of cells undergoing mitophagy from negligible levels compared with vehicle to 62.2%. Mitochondrial calcium levels also increased by 8.7-fold compared with the vehicle group. Notably, the activation of CaMKII, particularly its phosphorylated form, was pivotal in driving these mitochondrial changes, as inhibition using KN-93 restored MMP and decreased mitophagy. However, inhibition of Drp1 and MCU functions had a limited impact on the observed mitochondrial disruptions. Conclusion: Sublethal administration of Dox is closely linked to CaMKII activation through phosphorylation, emphasizing its pivotal role in early mitochondrial disruption. These findings present a promising direction for developing therapeutic strategies that may alleviate the cardiotoxic effects of Dox, potentially increasing its clinical efficacy.

3.
Nihon Yakurigaku Zasshi ; 158(5): 368-373, 2023.
Article Ja | MEDLINE | ID: mdl-37673613

Cardiovascular disease is a major cause of death worldwide, with high prevalence and morbidity. Recent advances in technology have reported that abnormalities in the gut microbiota are associated with a variety of diseases, including cardiovascular diseases. The gut microbiota is a complex ecosystem that plays an important role in maintaining host health. It has been reported that the imbalance of gut microbiota causes changes in the production of substances derived from gut bacteria, such as short-chain fatty acids, trimethylamine-N-oxide, and lipopolysaccharide, and contributes to the development of cardiovascular diseases. In the drug discovery, it is a promising approach to prevention and therapy of the cardiovascular disease to focus on the relation between gut and heart, such as gut bacteria. However, there are challenges that must be overcome to convert this approach into effective therapy. In this review, we focus on cardiovascular diseases, particularly atherosclerotic disease, heart failure, and atrial fibrillation, and discuss the relationship between gut bacteria and substances derived from gut bacteria in cardiovascular disease. We also discuss the challenges and potential of drug discovery targeting the gut-heart relationship for the treatment and prevention of cardiovascular disease.


Cardiovascular Diseases , Gastrointestinal Microbiome , Heart Failure , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Ecosystem , Drug Discovery
4.
Hypertens Res ; 46(10): 2368-2377, 2023 10.
Article En | MEDLINE | ID: mdl-37592041

Soluble uric acid (UA) absorbed by cells through UA transporters (UATs) accumulates intracellularly, activates the NLRP3 inflammasome and thereby increases IL-1ß secretion. ABCG2 transporter excludes intracellular UA. However, it remains unknown whether ABCG2 inhibition leads to intracellular accumulation of UA and increases IL-1ß production. In this study, we examined whether genetic and pharmacological inhibition of ABCG2 could increase IL-1ß production in mouse macrophage-like J774.1 cells especially under hyperuricemic conditions. We determined mRNA and protein levels of pro-IL-1ß, mature IL-1ß, caspase-1 and several UATs in culture supernatants and lysates of J774.1 cells with or without soluble UA pretreatment. Knockdown experiments using an shRNA against ABCG2 and pharmacological experiments with an ABCG2 inhibitor were conducted. Extracellularly applied soluble UA increased protein levels of pro-IL-1ß, mature IL-1ß and caspase-1 in the culture supernatant from lipopolysaccharide (LPS)-primed and monosodium urate crystal (MSU)-stimulated J774.1 cells. J774.1 cells expressed UATs of ABCG2, GLUT9 and MRP4, and shRNA knockdown of ABCG2 increased protein levels of pro-IL-1ß and mature IL-1ß in the culture supernatant. Soluble UA increased mRNA and protein levels of ABCG2 in J774.1 cells without either LPS or MSU treatment. An ABCG2 inhibitor, febuxostat, but not a urate reabsorption inhibitor, dotinurad, enhanced IL-1ß production in cells pretreated with soluble UA. In conclusion, genetic and pharmacological inhibition of ABCG2 enhanced IL-1ß production especially under hyperuricemic conditions by increasing intracellularly accumulated soluble UA that activates the NLRP3 inflammasome and pro-IL-1ß transcription in macrophage-like J774.1 cells.


Inflammasomes , Uric Acid , Mice , Animals , Uric Acid/pharmacology , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , RNA, Small Interfering/pharmacology , RNA, Messenger/pharmacology , Caspases/pharmacology
5.
Biomedicines ; 11(5)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37238929

Uric acid (UA) forms monosodium urate (MSU) crystals to exert proinflammatory actions, thus causing gout arthritis, urolithiasis, kidney disease, and cardiovascular disease. UA is also one of the most potent antioxidants that suppresses oxidative stress. Hyper andhypouricemia are caused by genetic mutations or polymorphism. Hyperuricemia increases urinary UA concentration and is frequently associated with urolithiasis, which is augmented by low urinary pH. Renal hypouricemia (RHU) is associated with renal stones by increased level of urinary UA, which correlates with the impaired tubular reabsorption of UA. Hyperuricemia causes gout nephropathy, characterized by renal interstitium and tubular damage because MSU precipitates in the tubules. RHU is also frequently associated with tubular damage with elevated urinary beta2-microglobulin due to increased urinary UA concentration, which is related to impaired tubular UA reabsorption through URAT1. Hyperuricemia could induce renal arteriopathy and reduce renal blood flow, while increasing urinary albumin excretion, which is correlated with plasma xanthine oxidoreductase (XOR) activity. RHU is associated with exercise-induced kidney injury, since low levels of SUA could induce the vasoconstriction of the kidney and the enhanced urinary UA excretion could form intratubular precipitation. A U-shaped association of SUA with organ damage is observed in patients with kidney diseases related to impaired endothelial function. Under hyperuricemia, intracellular UA, MSU crystals, and XOR could reduce NO and activate several proinflammatory signals, impairing endothelial functions. Under hypouricemia, the genetic and pharmacological depletion of UA could impair the NO-dependent and independent endothelial functions, suggesting that RHU and secondary hypouricemia might be a risk factor for the loss of kidney functions. In order to protect kidney functions in hyperuricemic patients, the use of urate lowering agents could be recommended to target SUA below 6 mg/dL. In order to protect the kidney functions in RHU patients, hydration and urinary alkalization may be recommended, and in some cases an XOR inhibitor might be recommended in order to reduce oxidative stress.

6.
Endocr J ; 70(6): 619-627, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-36908137

Epstein-Barr virus (EBV) is a human herpes virus that latently infects B lymphocytes. When EBV is reactivated, host B cells differentiate into plasma cells and produce IgM-dominant antibodies as well as many progeny virions. The aims of the present study were to confirm the IgM dominance of thyrotropin-receptor antibodies (TRAbs) produced by EBV reactivation and investigate the roles of TRAb-IgM in Graves' disease. Peripheral blood mononuclear cells (PBMCs) containing TRAb-producing cells were stimulated for EBV reactivation, and TRAb-IgM and TRAb-IgG were measured by ELISA. TRAb-IgM were purified and TSH-binding inhibitory activities were assessed using a radio-receptor assay. Porcine thyroid follicular epithelial cells were cultured with TRAb-IgM and/or complements to measure the intracellular levels of cAMP and the amount of LDH released. TRAb-IgM/TRAb-IgG (the MG ratio) was examined in sequential serum samples of Graves' disease and compared among groups of thyroid function. The results obtained showed that IgM-dominant TRAb production was induced by EBV reactivation. TRAb-IgM did not inhibit TSH binding to TSH receptors and did not transduce hormone-producing signals. However, it destroyed thyroid follicular epithelial cells with complements. The MG ratio was significantly higher in samples of hyperthyroidism or hypothyroidism than in those with normal function or in healthy controls. A close relationship was observed between TRAb-IgM produced by EBV reactivation and the development and exacerbation of Graves' disease. The present results provide novel insights for the development of prophylaxis and therapeutics for Graves' disease.


Epstein-Barr Virus Infections , Graves Disease , Animals , Swine , Humans , Herpesvirus 4, Human/physiology , Long-Acting Thyroid Stimulator , Leukocytes, Mononuclear , Receptors, Thyrotropin , Immunoglobulin M , B-Lymphocytes , Thyrotropin , Autoantibodies , Immunoglobulins, Thyroid-Stimulating
8.
Regen Ther ; 21: 239-249, 2022 Dec.
Article En | MEDLINE | ID: mdl-36092505

Introduction: Dysfunction of the sinoatrial node (SAN) cells causes arrhythmias, and many patients require artificial cardiac pacemaker implantation. However, the mechanism of impaired SAN automaticity remains unknown, and the generation of human SAN cells in vitro may provide a platform for understanding the pathogenesis of SAN dysfunction. The short stature homeobox 2 (SHOX2) and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) genes are specifically expressed in SAN cells and are important for SAN development and automaticity. In this study, we aimed to purify and characterize human SAN-like cells in vitro, using HCN4 and SHOX2 as SAN markers. Methods: We developed an HCN4-EGFP/SHOX2-mCherry dual reporter cell line derived from human induced pluripotent stem cells (hiPSCs), and HCN4 and SHOX2 gene expressions were visualized using the fluorescent proteins EGFP and mCherry, respectively. The dual reporter cell line was established using an HCN4-EGFP bacterial artificial chromosome-based semi-knock-in system and a CRISPR-Cas9-dependent knock-in system with a SHOX2-mCherry targeting vector. Flow cytometry, RT-PCR, and whole-cell patch-clamp analyses were performed to identify SAN-like cells. Results: Flow cytometry analysis and cell sorting isolated HCN4-EGFP single-positive (HCN4+/SHOX2-) and HCN4-EGFP/SHOX2-mCherry double-positive (HCN4+/SHOX2+) cells. RT-PCR analyses showed that SAN-related genes were enriched within the HCN4+/SHOX2+ cells. Further, electrophysiological analyses showed that approximately 70% of the HCN4+/SHOX2+ cells exhibited SAN-like electrophysiological characteristics, as defined by the action potential parameters of the maximum upstroke velocity and action potential duration. Conclusions: The HCN4-EGFP/SHOX2-mCherry dual reporter hiPSC system developed in this study enabled the enrichment of SAN-like cells within a mixed HCN4+/SHOX2+ population of differentiating cardiac cells. This novel cell line is useful for the further enrichment of human SAN-like cells. It may contribute to regenerative medicine, for example, biological pacemakers, as well as testing for cardiotoxic and chronotropic actions of novel drug candidates.

9.
J Pharmacol Sci ; 148(4): 351-357, 2022 Apr.
Article En | MEDLINE | ID: mdl-35300809

Endothelial nitric oxide synthase (eNOS) is a critical regulatory enzyme that controls vascular tone via the production of nitric oxide. Although thrombin also modulates vascular tone predominantly via the activation of protease-activated receptors (PARs), the time course and mechanisms involved in how thrombin controls eNOS enzymatic activity are unknown. eNOS enzymatic activity is enhanced by the phosphorylation of eNOS-Ser1177 and reduced by the phosphorylation of eNOS-Thr495. In this study, we hypothesized that thrombin regulates vascular tone through the differential phosphorylation of eNOS. Using rat descending aorta, we show that thrombin modulates vascular tone in an eNOS-dependent manner via activated PAR-1. We also show that thrombin causes a temporal biphasic response. Protein kinase C (PKC) is associated with second phase of thrombin-induced response. Western blot analysis demonstrated thrombin phosphorylated eNOS-Ser1177 and eNOS-Thr495 in human umbilical vein endothelial cells. A PKC inhibitor suppressed the thrombin-induced phosphorylation of eNOS-Thr495, but not that of eNOS-Ser1177. Our results suggest that thrombin induces a temporal biphasic vascular response through the differential phosphorylation of eNOS via activated PAR-1. Thrombin causes transient vasorelaxation by the phosphorylation of eNOS-Ser1177, and subsequent attenuation of vasorelaxation by the phosphorylation of eNOS-Thr495 via PKC, leading to the modulation of vascular tone.


Nitric Oxide Synthase Type III , Protein Kinase C , Receptor, PAR-1 , Thrombin , Vasodilation , Animals , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Protein Kinase C/metabolism , Rats , Receptor, PAR-1/metabolism , Thrombin/metabolism , Thrombin/pharmacology , Thrombin/physiology , Vasodilation/drug effects
11.
Hypertens Res ; 45(2): 283-291, 2022 02.
Article En | MEDLINE | ID: mdl-34853408

Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.


Heart Failure , Myocardial Infarction , Receptors, Adrenergic, alpha-1 , Animals , Human Umbilical Vein Endothelial Cells , Humans , Myocardial Infarction/complications , Neovascularization, Physiologic , Rats , Rats, Inbred Lew , Stem Cells , Vascular Endothelial Growth Factor A
12.
Circ J ; 85(5): 657-666, 2021 04 23.
Article En | MEDLINE | ID: mdl-33716265

BACKGROUND: Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions.Methods and Results:MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS: ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.


Adipose Tissue , Heart Failure , Myocardial Infarction , Angiogenesis Inducing Agents , Animals , Heart Failure/therapy , Human Umbilical Vein Endothelial Cells , Humans , Myocardial Infarction/therapy , Rats , Stem Cell Transplantation
13.
Sci Rep ; 11(1): 1161, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441918

MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.


E1A-Associated p300 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress/genetics , 3' Untranslated Regions/genetics , Animals , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Down-Regulation/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Development/genetics , MyoD Protein/genetics , Myoblasts/metabolism
14.
Circ J ; 85(2): 130-138, 2021 01 25.
Article En | MEDLINE | ID: mdl-33342914

Serum uric acid (UA) is taken up by endothelial cells and reduces the level of nitric oxide (NO) by inhibiting its production and accelerating its degradation. Cytosolic and plasma xanthine oxidase (XO) generates superoxide and also decreases the NO level. Thus, hyperuricemia is associated with impaired endothelial function. Hyperuricemia is often associated with vascular diseases such as chronic kidney disease (CKD) and cardiovascular disease (CVD). It has long been debated whether hyperuricemia is causally related to the development of these diseases. The 2020 American College of Rheumatology Guideline for the Management of Gout (ACR2020) does not recommend pharmacological treatment of hyperuricemia in patients with CKD/CVD. In contrast, the Japanese Guideline on Management of Hyperuricemia and Gout (JGMHG), 3rdedition, recommends pharmacological treatment of hyperuricemia in patients with CKD. In a FREED study on Japanese hyperuricemic patients with CVD, an XO inhibitor, febuxostat, improved the primary composite endpoint of cerebro-cardio-renovascular events, providing a rationale for the use of urate-lowering agents (ULAs). Since a CARES study on American gout patients with CVD treated with febuxostat revealed increased mortality, ACR2020 recommends switching to different ULAs. However, there was no difference in the mortality of Japanese patients between the febuxostat-treated group and the placebo or allopurinol-treated groups in either the FEATHER or FREED studies.


Cardiovascular Diseases , Gout , Hyperuricemia , Renal Insufficiency, Chronic , Uric Acid/blood , Allopurinol/therapeutic use , Cardiovascular Diseases/complications , Cardiovascular Diseases/drug therapy , Endothelial Cells , Febuxostat/therapeutic use , Gout/drug therapy , Gout Suppressants/therapeutic use , Humans , Hyperuricemia/drug therapy , Japan , Practice Guidelines as Topic , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Risk Factors
15.
Yonago Acta Med ; 63(3): 146-153, 2020 Aug.
Article En | MEDLINE | ID: mdl-32884433

Although there are many reports on the regulation of ion channel expression in transcription and translation, few drugs have been studied to influence post-translational modification of ion channel proteins. The Kv1.5 channel is a potassium ion channel expressed in atrial muscle, belongs to the voltage-gated K+ channel superfamily, and forms an ultrarapid delayed rectifier potassium ion current. It is important to understand the fate of these channel proteins, as cardiac Kv1.5 mutations can cause arrhythmias. Disruption of quantitative and qualitative control mechanisms of channels leads to stagnation and degradation of intracellular channel proteins. As a result, ion channel proteins are not transported to the cell membrane and are involved in the development of atrial fibrillation. This review takes the Kv1.5 channel as an example and focuses on the degradation mechanism of ion channel proteins, and discusses its application to the treatment of arrhythmia by drugs that control the mechanism of ion channel protein degradation.

16.
Hypertens Res ; 43(5): 380-388, 2020 05.
Article En | MEDLINE | ID: mdl-31942044

Myocardial ischemia/reperfusion injury worsens in the absence of nitric oxide synthase (NOS). Cilnidipine, a Ca2+ channel blocker, has been reported to activate endothelial NOS (eNOS) and increases nitric oxide (NO) in vascular endothelial cells. We examined whether pretreatment with cilnidipine could attenuate cardiac cell deaths including apoptosis caused by hypoxia/reoxygenation (H/R) injury. HL-1 mouse atrial myocytes as well as H9c2 rat ventricular cells were exposed to H/R, and cell viability was evaluated by an autoanalyzer and flow cytometry; eNOS expression, NO production, and electrophysiological properties were also evaluated by western blotting, colorimetry, and patch clamping, respectively, in the absence and presence of cilnidipine. Cilnidipine enhanced phosphorylation of eNOS and NO production in a concentration-dependent manner, which was abolished by siRNAs against eNOS or an Hsp90 inhibitor, geldanamycin. Pretreatment with cilnidipine attenuated cell deaths including apoptosis during H/R; this effect was reproduced by an NO donor and a xanthine oxidase inhibitor. The NOS inhibitor L-NAME abolished the protective action of cilnidipine. Pretreatment with cilnidipine also attenuated H9c2 cell death during H/R. Additional cilnidipine treatment during H/R did not significantly enhance its protective action. There was no significant difference in the protective effect of cilnidipine under normal and high Ca2+ conditions. Action potential duration (APD) of HL-1 cells was shortened by cilnidipine, with this shortening augmented after H/R. L-NAME attenuated the APD shortening caused by cilnidipine. These findings indicate that cilnidipine enhances NO production, shortens APD in part by L-type Ca2+ channel block, and thereby prevents HL-1 cell deaths during H/R.


Action Potentials/drug effects , Calcium Channel Blockers/pharmacology , Dihydropyridines/pharmacology , Hypoxia/metabolism , Myocytes, Cardiac/drug effects , Nitric Oxide/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Gene Knockdown Techniques , Mice , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/drug effects , RNA, Small Interfering , Rats
17.
Circ Rep ; 2(8): 425-432, 2020 Jul 02.
Article En | MEDLINE | ID: mdl-33693264

Background: Monocarboxylate transporter 9 (MCT9), an orphan transporter member of the solute carrier family 16 (SLC16), possibly reabsorbs uric acid in the renal tubule and has been suggested by genome-wide association studies to be involved in the development of hyperuricemia and gout. In this study we investigated the mechanisms regulating the expression of human (h) MCT9, its degradation, and physiological functions. Methods and Results: hMCT9-FLAG was stably expressed in HEK293 cells and its degradation, intracellular localization, and urate uptake activities were assessed by pulse-chase analysis, immunofluorescence, and [14C]-urate uptake experiments, respectively. hMCT9-FLAG was localized on the plasma membrane as well as in the endoplasmic reticulum and Golgi apparatus. The proteasome inhibitors MG132 and lactacystine increased levels of hMCT9-FLAG protein expression with enhanced ubiquitination, prolonged their half-life, and decreased [14C]-urate uptake. [14C]-urate uptake was increased by both heat shock (HS) and the HS protein inducer geranylgeranylacetone (GGA). Both HS and GGA restored the [14C]-urate uptake impaired by MG132. Conclusions: hMCT9 does transport urate and is degraded by a proteasome, inhibition of which reduces hMCT9 expression on the cell membrane and urate uptake. HS enhanced urate uptake through hMCT9.

18.
Int Heart J ; 60(6): 1328-1333, 2019 Nov 30.
Article En | MEDLINE | ID: mdl-31735784

The effect of restoring sinus rhythm by pulmonary vein isolation (PVI) on the quality of life (QOL) of patients with persistent atrial fibrillation (PerAF) has not been adequately investigated. This study was performed to compare the changes in QOL after extended PVI between patients with PerAF and paroxysmal AF (PAF).Patients with PAF (n = 38) and PerAF (n = 22) who underwent their first PVI and developed no AF recurrence 6 months after PVI were enrolled. QOL surveys were performed at baseline and 6 months post-ablation using Short Form-36 surveys.The mental component summary score (MCS) (53.4 ± 10.2 to 56.5 ± 7.1, P = 0.019) and physical component summary score (PCS) (46.1 ± 10.6 to 48.5 ± 8.3, P = 0.015) improved after PVI in the PAF group. The PCS, but not the MCS, improved after PVI in the PerAF group (45.8 ± 7.9 to 51.5 ± 6.2, P < 0.001). Changes in the PCS were greater in the PerAF group than in the PAF group (8.6 ± 6.9 versus 2.8 ± 5.2, P = 0.009). Multivariate regression analysis demonstrated that a low baseline MCS and the type of AF (PAF) were independent predictors of an increased MCS and that a low baseline PCS and the type of AF (PerAF) were independent predictors of an increased PCS.The changes in QOL differed between PAF and PerAF after PVI. Although most patients with PerAF were asymptomatic before PVI, their improvement in physical QOL was greater than that in patients with PAF. Such beneficial effects on physical QOL are likely expected in patients with PerAF with a low PCS before PVI.


Atrial Fibrillation/psychology , Atrial Fibrillation/therapy , Catheter Ablation , Pulmonary Veins , Quality of Life , Aged , Atrial Fibrillation/physiopathology , Female , Follow-Up Studies , Heart Rate , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Recurrence , Regression Analysis , Treatment Outcome
19.
Circ J ; 83(11): 2282-2291, 2019 10 25.
Article En | MEDLINE | ID: mdl-31527337

BACKGROUND: Treatment of myocardial infarction (MI) includes inhibition of the sympathetic nervous system (SNS). Cell-based therapy using adipose-derived stem cells (ASCs) has emerged as a novel therapeutic approach to treat heart failure in MI. The purpose of this study was to determine whether a combination of ASC transplantation and SNS inhibition synergistically improves cardiac functions after MI.Methods and Results:ASCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ASC cells, mRNA levels of angiogenic factors under normoxia or hypoxia, and the effects of norepinephrine and a ß-blocker, carvedilol, on the mRNA levels were determined. Hypoxia increased vascular endothelial growth factor (VEGF) mRNA in ASCs. Norepinephrine further increased VEGF mRNA; this effect was unaffected by carvedilol. VEGF promoted VEGF receptor phosphorylation and tube formation of human umbilical vein endothelial cells, which were inhibited by carvedilol. In in vivo studies using a rat MI model, transplanted ASC sheets improved contractile functions of MI hearts; they also facilitated neovascularization and suppressed fibrosis after MI. These beneficial effects of ASC sheets were abolished by carvedilol. The effects of ASC sheets and carvedilol on MI heart functions were confirmed by Langendorff perfusion experiments using isolated hearts. CONCLUSIONS: ASC sheets prevented cardiac dysfunctions and remodeling after MI in a rat model via VEGF secretion. Inhibition of VEGF effects by carvedilol abolished their beneficial effects.


Adrenergic beta-Antagonists/pharmacology , Carvedilol/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocardial Infarction/surgery , Subcutaneous Fat/cytology , Ventricular Function, Left/drug effects , Animals , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , Fibrosis , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Neovascularization, Physiologic/drug effects , Phosphorylation , Rats, Inbred Lew , Receptors, Vascular Endothelial Growth Factor/metabolism , Recovery of Function , Vascular Endothelial Growth Factor A/metabolism , Ventricular Remodeling/drug effects
20.
Circ J ; 83(4): 718-726, 2019 03 25.
Article En | MEDLINE | ID: mdl-30787218

BACKGROUND: Intracellular uric acid is known to increase the protein level and channel current of atrial Kv1.5; however, mechanisms of the uric acid-induced enhancement of Kv1.5 expression remain unclear. Methods and Results: The effects of uric acid on mRNA and protein levels of Kv1.5, as well as those of Akt, HSF1 and Hsp70, in HL-1 cardiomyocytes were studied by using qRT-PCR and Western blotting. The uptake of uric acid was measured using radio-labeled uric acid. The Kv1.5-mediated channel current was also measured by using patch clamp techniques. Uric acid up-taken by HL-1 cells significantly increased the level of Kv1.5 proteins in a concentration-dependent manner, with this increase abolished by an uric acid transporter inhibitor. Uric acid slowed degradation of Kv1.5 proteins without altering its mRNA level. Uric acid enhanced phosphorylation of Akt and HSF1, and thereby increased both transcription and translation of Hsp70; these effects were abolished by a PI3K inhibitor. Hsp70 knockdown abolished the uric acid-induced increases of Kv1.5 proteins and channel currents. CONCLUSIONS: Intracellular uric acid could stabilize Kv1.5 proteins through phosphorylation of Akt and HSF1 leading to enhanced expression of Hsp70.


HSP70 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/metabolism , Kv1.5 Potassium Channel/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Uric Acid/pharmacology , Animals , Cell Line , Kv1.5 Potassium Channel/drug effects , Mice , Phosphorylation/drug effects , Protein Biosynthesis , Transcription, Genetic
...