Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
J Pediatr (Rio J) ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38797509

OBJECTIVE: To assess the outcome of patients with cancer-related sepsis requiring continuous renal replacement therapy (CRRT) in a single-center pediatric intensive care unit (PICU). METHOD: Children with sepsis who necessitate CRRT from January 2017 to December 2021 were enrolled. The patients with leukemia/lymphoma or solid tumors were defined as underlying cancer. Multivariate logistic regression analysis was performed to identify the death risk factors in patients with cancer-related sepsis. RESULTS: A total of 146 patients were qualified for inclusion. Forty-six (31.5%) patients with cancer-related sepsis and 100 (68.5%) non-cancer-related sepsis. The overall PICU mortality was 28.1% (41/146), and mortality was significantly higher in cancer-related sepsis patients compared with non-cancer patients (41.3% vs. 22.0%, p = 0.016). Need mechanical ventilation, p-SOFA, acute liver failure, higher fluid overload at CRRT initiation, hypoalbuminemia, and high inotropic support were associated with PICU mortality in cancer-related sepsis patients. Moreover, levels of IL-6, total bilirubin, creatinine, blood urea nitrogen, and international normalized ratio were significantly higher in non-survivors than survivors. In multivariate logistic regression analysis, pediatric sequential organ failure assessment (p-SOFA) score (OR:1.805 [95%CI: 1.047-3.113]) and serum albumin level (OR: 0.758 [95%CI: 0.581 -0.988]) were death risk factors in cancer-related sepsis receiving CRRT, and the AUC of combined index of p-SOFA and albumin was 0.852 (95% CI: 0.730-0.974). CONCLUSION: The overall PICU mortality is high in cancer-related sepsis necessitating CRRT. Higher p-SOFA and lower albumin were independent risk factors for PICU mortality.

2.
Adv Biol (Weinh) ; : e2300576, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728002

Farnesoid X receptor (FXR) plays critical regulatory roles in cardiovascular physiology/pathology. However, the role of FXR agonist obeticholic acid (OCA) in sepsis-associated myocardial injury and underlying mechanisms remain unclear. C57BL/6J mice are treated with OCA before lipopolysaccharide (LPS) administration. The histopathology of the heart and assessment of FXR expression and mitochondria function are performed. To explore the underlying mechanisms, H9c2 cells, and primary cardiomyocytes are pre-treated with OCA before LPS treatment, and extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 is used. LPS-induced myocardial injury in mice is significantly improved by OCA pretreatment. Mechanistically, OCA pretreatment decreased reactive oxygen species (ROS) levels and blocked the loss of mitochondrial membrane potential (ΔΨm) in cardiomyocytes. The expression of glutathione peroxidase 1 (GPX1), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF-2) increased in the case of OCA pretreatment. In addition, OCA improved mitochondria respiratory chain with increasing Complex I expression and decreasing cytochrome C (Cyt-C) diffusion. Moreover, OCA pretreatment inhibited LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway. FXR agonist OCA inhibits LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway to protect mice against LPS-induced myocardial injury.

3.
Front Pharmacol ; 15: 1362382, 2024.
Article En | MEDLINE | ID: mdl-38444942

Bile acids (BAs) constitute essential components of cholesterol metabolites that are synthesized in the liver, stored in the gallbladder, and excreted into the intestine through the biliary system. They play a crucial role in nutrient absorption, lipid and glucose regulation, and the maintenance of metabolic homeostasis. In additional, BAs have demonstrated the ability to attenuate disease progression such as diabetes, metabolic disorders, heart disease, and respiratory ailments. Intriguingly, recent research has offered exciting evidence to unveil their potential antitumor properties against various cancer cell types including tamoxifen-resistant breast cancer, oral squamous cell carcinoma, cholangiocarcinoma, gastric cancer, colon cancer, hepatocellular carcinoma, prostate cancer, gallbladder cancer, neuroblastoma, and others. Up to date, multiple laboratories have synthesized novel BA derivatives to develop potential drug candidates. These derivatives have exhibited the capacity to induce cell death in individual cancer cell types and display promising anti-tumor activities. This review extensively elucidates the anticancer activity of natural BAs and synthetic derivatives in cancer cells, their associated signaling pathways, and therapeutic strategies. Understanding of BAs and their derivatives activities and action mechanisms will evidently assist anticancer drug discovery and devise novel treatment.

4.
Clin Immunol ; 254: 109698, 2023 09.
Article En | MEDLINE | ID: mdl-37481013

Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.


Hexokinase , Sepsis , Animals , Mice , Activating Transcription Factor 4/metabolism , Cytokines/metabolism , Glycolysis , Hexokinase/genetics , Hexokinase/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immune Tolerance , Lactic Acid , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Macrophages/metabolism , Mammals/metabolism , Sepsis/genetics , Sepsis/metabolism , Ubiquitination
5.
Chin Med J (Engl) ; 136(18): 2210-2220, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37488674

BACKGROUND: Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated. METHODS: The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry. RESULTS: ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 . CONCLUSION: ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.


Carcinoma in Situ , Chalcones , Ferroptosis , Gallbladder Neoplasms , Animals , Mice , Chalcones/pharmacology , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Glutathione Disulfide , Kelch-Like ECH-Associated Protein 1 , Mice, Nude , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species , Humans
6.
Hepatology ; 78(5): 1352-1367, 2023 11 01.
Article En | MEDLINE | ID: mdl-36633260

BACKGROUND AND AIMS: Nicotinamide N -methyltransferase (NNMT), an enzyme responsible for the methylation of nicotinamide, is involved in many metabolic pathways in adipose tissue and the liver. However, the role of NNMT in editing the tumor immune microenvironment is not well understood. APPROACH AND RESULTS: Here, we identified that NNMT can promote IL6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression by decreasing the tri-methyl-histone H3 levels on the promoters of IL6 and CSF2 (encoding GM-CSF) and CCAAT/Enhancer Binding Protein, an essential transcription factor for IL6 expression, thus promoting differentiation of macrophages into M2 type tumor-associated macrophages and generation of myeloid-derived suppressor cells from peripheral blood mononuclear cells. Treatment of xenografted tumor models overexpressing NNMT gallbladder carcinoma (GBC) cells with the NNMT inhibitor JBSNF-000088 resulted in compromised tumor development and decreased expression levels of IL6, GM-CSF, tumor-associated macrophage marker CD206, and myeloid-derived suppressor cell marker CD33 but increased expression levels of CD8. In addition, elevated expression of NNMT in tumors of patients with GBC was correlated with increased expression levels of CD206 and CD33 but with decreased levels of CD8 and survival of patients. CONCLUSIONS: These data highlight the critical role of NNMT in GBC progression. Inhibition of NNMT by JBSNF-000088 is a potential molecular target for GBC immunotherapy.


Gallbladder Neoplasms , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/immunology , Macrophages/metabolism , Methyltransferases , Myeloid-Derived Suppressor Cells/metabolism , Niacinamide , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
7.
Clin Proteomics ; 20(1): 4, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36650427

BACKGROUND: Continuous renal replacement therapy (CRRT) has been considered as an adjuvant therapy for sepsis. However, the novel biomarker to evaluate the benefits of CRRT is limited. The aim of this study was to explore the novel biomarkers involved in the impact of CRRT in pediatric sepsis. METHODS: The serum proteomic profiles on the 7th day after CRRT (CRRT 7th day) compared with before CRRT (CRRT 1st day) was determined in 3 children with sepsis as a discovery set. The screened candidates were confirmed in the validation cohort including patients received CRRT (CRRT group) and without CRRT (non-CRRT group). We defined that pediatric sequential organ failure assessment score (pSOFA) in pediatric patients with sepsis decreased by 2 points or more on the CRRT 1st day compared with CRRT initiation as CRRT responders. The changes of serum biomarkers were compared between CRRT responders and CRRT non-responders. Moreover, correlation analysis was further conducted in pediatric sepsis. RESULTS: A total of 145 differentially expressed proteins were found according to the serum proteomics profiles. By visualizing the interaction between the differential proteins, 6 candidates (Lysozyme C [LYZ], Leucine-rich alpha-2-glycoprotein [LRG1], Fibromodulin [FMOD], Alpha-1-antichymotrypsin [SERPINA3], L-selectin [SELL], Monocyte differentiation antigen CD14 [CD14]) were screened. In the validation cohort, serum levels of LYZ and LRG1 showed a higher trend on the CRRT 7th day than that on the 1st day in the non-CRRT group. However, the changes in levels of LYZ and LRG1 on the 7th day was significant in the CRRT group (p = 0.016, p = 0.009, respectively). Moreover, the levels of LYZ and LRG1 on the CRRT 7th day in the CRRT group were significantly higher than that in the non-CRRT group (p < 0.001, p = 0.025). Decreased levels of CD14 were associated with sepsis recovery, but not associated with CRRT. There were no significantly difference in serum FMOD, SERPINA3, and SELL levels. Importantly, serum LYZ and LRG1 levels changed in CRRT responders, but not CRRT non-responders. Further analysis indicated that serum LYZ levels were correlated to total platelet counts, aspartate aminotransferase (ALT), alanine aminotransferase (AST), and albumin levels, and serum LRG1 level were correlated to total platelet count and TBIL levels on the 1st day in the CRRT group. Protein-protein interaction network analysis displayed that serum LYZ and LRG1 were involved in the process of inflammatory response, leucocytes adhesion to vascular endothelial cell, as well as complement activation. CONCLUSION: Elevated serum LYZ and LRG1 levels are associated with clinical benefits of CRRT during sepsis.

8.
Sci Bull (Beijing) ; 67(8): 813-824, 2022 04 30.
Article En | MEDLINE | ID: mdl-36546234

Soy isoflavones are natural tyrosine kinase inhibitors closely associated with decreased morbidity and mortality of various tumors. The activation of tyrosine kinases such as ERBB2 is the mechanism by which cholecystitis transforms into gallbladder cancer (GBC), therefore, it is important to investigate the relationship between long-term exposure to soy isoflavones and the occurrence and progression of GBC. This case-control study (n = 85 pairs) found that the high level of plasma soy isoflavone-genistein (GEN) was associated with a lower risk of gallbladder cancer (≥326.00 ng/mL compared to ≤19.30 ng/mL, crude odds ratio 0.15, 95% CI 0.04-0.59; P for trend = 0.016), and that the level of GEN exposure negatively correlated with Ki67 expression in GBC tissue (n = 85). Consistent with these results, the proliferation of GBC cells was inhibited in the long-term exposure models of GEN in vitro and in vivo. The long-term exposure to GEN reduced the tyrosine kinase activity of ERBB2 and impaired the function of the PTK6-AKT-GSK3ß axis, leading to downregulation of the MCM complex in GBC cells. In summary, long-term exposure to GEN associated with soy products intake might play a certain role in preventing GBC and even inhibiting the proliferation of GBC cells.


Carcinoma in Situ , Gallbladder Neoplasms , Humans , Genistein/pharmacology , Gallbladder Neoplasms/metabolism , Case-Control Studies , Cell Proliferation
9.
Cell Mol Biol Lett ; 27(1): 99, 2022 Nov 18.
Article En | MEDLINE | ID: mdl-36401185

BACKGROUND: tRNA-derived fragments (tRFs) are newly discovered noncoding RNAs and regulate tumor progression via diverse molecular mechanisms. However, the expression and biofunction of tRFs in gallbladder cancer (GBC) have not been reported yet. METHODS: The expression of tRFs in GBC was detected by tRF and tiRNA sequencing in GBC tissues and adjacent tissues. The biological function of tRFs was investigated by cell proliferation assay, clonal formation assay, cell cycle assay, and xenotransplantation model in GBC cell lines. The molecular mechanism was discovered and verified by transcriptome sequencing, fluorescence in situ hybridization (FISH), target gene site prediction, and RNA binding protein immunoprecipitation (RIP). RESULTS: tRF-3013b was significantly downregulated in GBC compared with para-cancer tissues. Decreased expression of tRF-3013b in GBC patients was correlated with poor overall survival. Dicer regulated the production of tRF-3013b, and its expression was positively correlated with tRF-3013b in GBC tissues. Functional experiments demonstrated that tRF-3013b inhibited GBC cell proliferation and induced cell-cycle arrest. Mechanically, tRF-3013b exerted RNA silencing effect on TPRG1L by binding to AGO3, and then inhibited NF-κB. TPRG1L overexpression could rescue the effects of tRF-3013b on GBC cell proliferation. CONCLUSIONS: This study indicated that Dicer-induced tRF-3013b inhibited GBC proliferation by targeting TPRG1L and repressed NF-κB, pointing to tRF-3013b as a novel potential therapeutic target of GBC.


Gallbladder Neoplasms , Humans , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , In Situ Hybridization, Fluorescence , Cell Proliferation
10.
Front Immunol ; 13: 990522, 2022.
Article En | MEDLINE | ID: mdl-36263056

Background: Myeloid-derived suppressor cells (MDSCs) expansion is an important mechanism underlying immunosuppression during sepsis. Though continuous renal replacement therapy (CRRT) may attenuate hyperinflammatory response in sepsis, its role in regulating MDSCs is unknown. The aim of this study was to assess the potential role of CRRT involved in sepsis-induced MDSCs expansion in pediatric sepsis. Method: The proportion of polymorphonuclear MDSCs (PMN-MDSCs) was detected before CRRT (pre-CRRT), at 24 hours after CRRT (CRRT 1st day) and on the 7th day after CRRT (CRRT 7th day). The correlation analyses were performed to elucidate the relationship of MDSCs with clinical indexes in sepsis. Results: Totally 22 pediatric patients with sepsis were enrolled [median age 44 (IQR15, 83) months]. PMN-MDSCs were expanded in pediatric sepsis compared with healthy controls (4.30% vs. 0.37%, P=0.04). The proportion of PMN-MDSCs showed a decreased tendency on the CRRT 7th day compared with that on the CRRT 1st day in survivors (2.29% vs.5.32%, P = 0.088). There was no significant difference in the proportion of PMN-MDSCs between survivors and non-survivors before CRRT (4.51% vs. 3.33%, P=0.745). The levels of interleukin 6 (IL-6) was decreased on the CRRT 7th day compared with CRRT 1st day in survivors. In the subgroups of patients with significantly decreased IL-6 levels after CRRT, the proportion of PMN-MDSCs on the CRRT 7th day were also significantly decreased compared with that on the CRRT 1st day (2.21% vs. 6.67%, P = 0.033). Conclusion: The proportion of PMN-MDSCs was down-regulated on the CRRT 7th day in survivors with sepsis. The reduced PMN-MDSCs expansion may relate to decreased IL-6 level.


Continuous Renal Replacement Therapy , Myeloid-Derived Suppressor Cells , Sepsis , Humans , Child , Adult , Interleukin-6 , Sepsis/therapy , Cell Proliferation
11.
Biochem Pharmacol ; 205: 115253, 2022 11.
Article En | MEDLINE | ID: mdl-36176239

Lithocholic acid (LCA), one of the most common metabolic products of bile acids (BAs), is originally synthesized in the liver, stored in the gallbladder, and released to the intestine, where it assists absorption of lipid-soluble nutrients. LCA has recently emerged as a powerful reagent to inhibit tumorigenesis; however, the anti-tumor activity and molecular mechanisms of LCA in gallbladder cancer (GBC) remain poorly acknowledged. Here, we analyzed serum levels of LCA in human GBC and found that LCA was significantly downregulated in these patients, and reduced LCA levels were associated with poor clinical outcomes. Treatment of xenografts with LCA impeded tumor growth. Furthermore, LCA treatment in GBC cell lines decreased glutaminase (GLS) expression, glutamine (Gln) consumption, and GSH/GSSG and NADPH/NADP+ ratios, leading to cellular ferroptosis. In contrast, GLS overexpression in tumor cells fully restored GBC proliferation and decreased ROS imbalance, thus suppressing ferroptosis. Our findings reveal that LCA functions as a tumor-suppressive factor in GBC by downregulating GLS-mediated glutamine metabolism and subsequently inducing ferroptosis. This study may offer a new therapeutic strategy tailored to improve the treatment of GBC.


Gallbladder Neoplasms , Glutaminase , Humans , Gallbladder Neoplasms/metabolism , Lithocholic Acid/pharmacology , Glutamine/metabolism , NADP , Reactive Oxygen Species , Glutathione Disulfide , Bile Acids and Salts , Cell Proliferation , Lipids , Cell Line, Tumor
12.
Oxid Med Cell Longev ; 2022: 9673512, 2022.
Article En | MEDLINE | ID: mdl-35847588

Sepsis is extremely heterogeneous pathology characterized by complex metabolic changes. Fibroblast growth factor 19 (FGF19) is a well-known intestine-derived inhibitor of bile acid biosynthesis. However, it is largely unknown about the roles of FGF19 in improving sepsis-associated metabolic disorder and organ injury. In the present study, mice were intravenously injected recombinant human FGF19 daily for 7 days followed by lipopolysaccharide (LPS) administration. At 24 hours after LPS stimuli, sera were collected for metabolomic analysis. Ingenuity pathway analysis (IPA) network based on differential metabolites (DMs) was conducted. Here, metabolomic analysis revealed that FGF19 pretreatment reversed the increase of LPS-induced fatty acids. IPA network indicated that altered linoleic acid (LA) and gamma-linolenic acid (GLA) were involved in the regulation of oxidative stress and mitochondrial function and were closely related to reactive oxygen species (ROS) generation. Further investigation proved that FGF19 pretreatment decreased serum malondialdehyde (MDA) levels and increased serum catalase (CAT) levels. In livers, FGF19 suppressed the expression of inducible NO synthase (iNOS) and enhanced the expression of nuclear factor erythroid 2-related factor 2 (NRF2) and hemeoxygenase-1 (HO-1). Finally, FGF19 pretreatment protected mice against LPS-induced liver, ileum, and kidney injury. Taken together, FGF19 alleviates LPS-induced organ injury associated with improved serum LA and GLA levels and oxidative stress, suggesting that FGF19 might be a promising target for metabolic therapy for sepsis.


Lipopolysaccharides , Sepsis , Animals , Fibroblast Growth Factors/metabolism , Humans , Lipopolysaccharides/metabolism , Mice , Oxidative Stress , Reactive Oxygen Species/metabolism
13.
Cell Oncol (Dordr) ; 45(4): 689-708, 2022 Aug.
Article En | MEDLINE | ID: mdl-35870050

PURPOSE: This study aimed to investigate the efficiency of our chemically synthesized TT-00420, a novel spectrum-selective multiple protein kinase inhibitor, in cultured cells and animal models of gallbladder cancer (GBC) and explore its potential mechanism. METHODS: Multiple GBC models were established to assess the anti-tumor efficiency, toxicity, and pharmacokinetics of TT-00420. Integrated transcriptomic, proteomic and phosphoproteomic analysis was conducted to identify potential downstream effectors of TT-00420. Western blotting, qRT-PCR, nuclear-cytoplasm separation, and immunofluorescence were performed to confirm the multi-omic results and explore the molecular mechanism of TT-00420. Immunohistochemistry was used to detect FGFR1 and p-FGFR1 expression levels in GBC samples. Autodock software was utilized to investigate the potential binding mode between the TT-00420 and the human FGFR1. RESULTS: We found that TT-00420 exerted potent growth inhibition of GBC cell lines and multiple xenograft models. Treatment of mice with 15 mg/kg TT-00420 via gavage displayed a half-life of 1.8 h in the blood and rapid distribution to the liver, kidneys, lungs, spleen, and tumors at 0.25 h, but no toxicity to these organs over 2 weeks. Multi-omic analysis revealed c-Jun as a potential downstream effector after TT-00420 treatment. Mechanistically, TT-00420 showed rigorous ability to block FGFR1 and its downstream JNK-JUN (S63/S73) signaling pathway, and induce c-Jun S243-dependent MEK/ERK reactivation, leading to FASLG-dependent tumor cell death. Finally, we found that FGFR1 and p-FGFR1 expression was elevated in GBC patients and these levels correlated with decreased patient survival. CONCLUSIONS: TT-00420 shows potent antitumor efficacy and may serve as a novel agent to improve GBC prognosis.


Gallbladder Neoplasms , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gallbladder Neoplasms/metabolism , Humans , Mice , Protein Kinase Inhibitors/pharmacology , Proteomics , Signal Transduction
14.
Int J Infect Dis ; 121: 141-147, 2022 Aug.
Article En | MEDLINE | ID: mdl-35568360

OBJECTIVES: Vascular hyperpermeability by loss of endothelial barrier integrity is a hallmark of sepsis. Vimentin is involved in the regulation of the endothelial function and inflammatory response. However, the serum level of vimentin and its clinical relevance in pediatric severe sepsis (PSS) remain unknown. METHODS: We conducted a prospective study of PSS cases who were admitted to the pediatric intensive care unit (PICU) from January 2018 to December 2020. RESULTS: A total of 108 patients with PSS with a median age of 19.5 month were enrolled. The hospital mortality rate was 19.44% (21/108). Comparing with healthy controls, serum vimentin levels on PICU admission were significantly higher in patients with PSS (P < 0.001). The area under the ROC curve for vimentin to predict the hospital mortality was 0.712 (95% CI: 0.578-846) with a sensitivity of 71.43% and a specificity of 70.11%. Moreover, hospital mortality was significantly higher in patients with vimentin level over the cutoff value of 24.53 ng/ml than in patients with vimentin level below 24.53 ng/ml (P < 0.001). CONCLUSIONS: Serum vimentin level as an indicator of endothelial injury is associated with the prognosis of PSS, and serum vimentin level ≥24.53 ng/ml on PICU admission predicts high risk for hospital mortality in PSS.


Sepsis , Vimentin , Child , Humans , Intensive Care Units, Pediatric , Prognosis , Prospective Studies , ROC Curve , Sepsis/blood , Vimentin/blood
15.
Blood Purif ; 51(7): 600-607, 2022.
Article En | MEDLINE | ID: mdl-34488221

BACKGROUND: Extracorporeal therapy that included therapeutic plasma exchange (TPE) or continuous hemofiltration (CHF) for toxic epidermal necrolysis (TEN) syndrome was used in small number of patients. We aimed to describe the sequential mode of combined application of CHF and TPE in 3 TEN patients with multiple organ dysfunction (MODS) in pediatric intensive care unit. METHODS: Three patients with fatal TEN received sequential CHF and TPE due to unsatisfactorily conventional treatments. CHF was initiated and performed on a daily basis with 35-50 mL/kg.h replacement fluid at the rate of 3-5 mL/kg.min blood flow. CHF was temporarily interrupted for TPE, which was performed with exchange 1-1.5-fold of one body calculated plasma volume in each section. RESULTS: All 3 fatal TEN (with >30% involvement of body surface and MODS) following unsuccessful treatment with corticosteroids and intravenous immunoglobulin. Antibiotics were suspected in the TEN-triggered drugs. The range number of TPE sessions was 3-5 and the duration of CHF was from 120 h to 202 h. After initiation of TPE and CHF, blistering with extensive epidermal necrosis halted and the skin re-epithelialized within 2 weeks. Serum C-reactive protein, procalcitonin, tumor necrosis factor-α , and interlukin-6 decreased and percentage of natural killer cells increased in surviving children. Two patients survived to discharge and one case died due to nosocomial infection with multidrug-resistant Acinetobacter baumannii. CONCLUSION: After sequential TPE and CHF, skin lesions and inflammatory response improved in TEN. Our result indicates extracorporeal therapy could be used as an alternative modality for fatal pediatric TEN.


Stevens-Johnson Syndrome , Child , Humans , Immunoglobulins, Intravenous/therapeutic use , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Plasma Exchange , Plasmapheresis , Retrospective Studies , Stevens-Johnson Syndrome/drug therapy , Stevens-Johnson Syndrome/pathology
16.
Int J Biol Sci ; 17(13): 3608-3621, 2021.
Article En | MEDLINE | ID: mdl-34512169

Purpose: The incidence of hepatocellular carcinoma (HCC) is extremely high, and China accounts for approximately 50% of global liver cancer cases. Previous studies reported that CDC20 is involved in the occurrence and progression of a variety of malignant tumors. So, whether CDC20 will affect the development of HCC, we have conducted in-depth research on this. Methods: We selected Hep3B and HepG2 for cell culture, and performed siRNA transfection, lentiviral infection, western blot, MTS determination, cell cycle determination, apoptosis test, immunodeficiency test, clone survival test and subcutaneous parthenogenesis in nude mice. Results: Knockdown of CDC20 greatly enhanced the radiation efficacy on the growth retardation in HepG2, and protein level of CDC20 was decreased for the activation of P53 by radiation. Downregulation of CDC20 combined with radiation can inhibit proliferation, aggravate DNA damage, increase G2/M arrest, and promote apoptosis of HCC cells to a greater extent, and the relative survival fraction of HCC cells was gradually reduced with radiation dose increased in P53 mutated Hep3B cells. After knocking down CDC20 in HCC, Bcl-2 was down-regulated and Bax expression increased. Down-regulation of CDC20 can inhibit further invasion by promoting the radiosensitivity of HCC. Conclusion: In this study, we found that that CDC20 was highly expressed in HCC and participated in radio resistance of HCC cells with P53 mutation Bcl-2/Bax via signaling pathway. This study is the first to present evidence that CDC20 may play a role in improving the efficacy of radiotherapy in HCC.


Carcinoma, Hepatocellular/metabolism , Cdc20 Proteins/metabolism , Genes, p53 , Liver Neoplasms/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/radiotherapy , Hep G2 Cells , Humans , Immunotherapy , Liver Neoplasms/genetics , Liver Neoplasms/radiotherapy , Mice, Nude , Radiation Tolerance , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Xenograft Model Antitumor Assays
17.
J Hepatol ; 75(5): 1128-1141, 2021 11.
Article En | MEDLINE | ID: mdl-34171432

BACKGROUND & AIMS: Our previous genomic whole-exome sequencing (WES) data identified the key ErbB pathway mutations that play an essential role in regulating the malignancy of gallbladder cancer (GBC). Herein, we tested the hypothesis that individual cellular components of the tumor microenvironment (TME) in GBC function differentially to participate in ErbB pathway mutation-dependent tumor progression. METHODS: We engaged single-cell RNA-sequencing to reveal transcriptomic heterogeneity and intercellular crosstalk from 13 human GBCs and adjacent normal tissues. In addition, we performed WES analysis to reveal the genomic variations related to tumor malignancy. A variety of bulk RNA-sequencing, immunohistochemical staining, immunofluorescence staining and functional experiments were employed to study the difference between tissues with or without ErbB pathway mutations. RESULTS: We identified 16 cell types from a total of 114,927 cells, in which epithelial cells, M2 macrophages, and regulatory T cells were predominant in tumors with ErbB pathway mutations. Furthermore, epithelial cell subtype 1, 2 and 3 were mainly found in adenocarcinoma and subtype 4 was present in adenosquamous carcinoma. The tumors with ErbB pathway mutations harbored larger populations of epithelial cell subtype 1 and 2, and expressed higher levels of secreted midkine (MDK) than tumors without ErbB pathway mutations. Increased MDK resulted in an interaction with its receptor LRP1, which is expressed by tumor-infiltrating macrophages, and promoted immunosuppressive macrophage differentiation. Moreover, the crosstalk between macrophage-secreted CXCL10 and its receptor CXCR3 on regulatory T cells was induced in GBC with ErbB pathway mutations. Elevated MDK was correlated with poor overall survival in patients with GBC. CONCLUSIONS: This study has provided valuable insights into transcriptomic heterogeneity and the global cellular network in the TME, which coordinately functions to promote the progression of GBC with ErbB pathway mutations; thus, unveiling novel cellular and molecular targets for cancer therapy. LAY SUMMARY: We employed single-cell RNA-sequencing and functional assays to uncover the transcriptomic heterogeneity and intercellular crosstalk present in gallbladder cancer. We found that ErbB pathway mutations reduced anti-cancer immunity and led to cancer development. ErbB pathway mutations resulted in immunosuppressive macrophage differentiation and regulatory T cell activation, explaining the reduced anti-cancer immunity and worse overall survival observed in patients with these mutations.


ErbB Receptors/immunology , Gallbladder Neoplasms/immunology , Immunocompromised Host/physiology , Midkine/adverse effects , Cell Proliferation/genetics , China/epidemiology , ErbB Receptors/antagonists & inhibitors , Gallbladder Neoplasms/epidemiology , Gallbladder Neoplasms/physiopathology , Humans , Midkine/genetics , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data , Signal Transduction/genetics , Single-Cell Analysis/methods , Single-Cell Analysis/statistics & numerical data , Exome Sequencing/methods , Exome Sequencing/statistics & numerical data
18.
Crit Care Explor ; 3(3): e0366, 2021 Mar.
Article En | MEDLINE | ID: mdl-33786442

OBJECTIVES: We aimed to describe the characteristics and outcome in children with severe Mycoplasma pneumoniae pneumonia in a Chinese PICU. DESIGN: A retrospective observational study from 2017 to 2019. SETTING: A 36-bed university tertiary PICU at Shanghai Children's Hospital. PATIENTS: Patients admitted to a tertiary PICU 29 days to 18 years old screened for laboratory-confirmed severe M. pneumoniae pneumonia. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Descriptive analysis of baseline characteristics for patients included hospital mortality, organ dysfunctions, use of mechanical ventilation, continuous renal replacement therapy, and/or extracorporeal membrane oxygenation. A total of 817 children with severe pneumonia were admitted to PICU, and 203 of 817 cases (24.8%) with severe M. pneumoniae pneumonia were included in this study. The median age was 41 months (interquartile range, 20-67 mo), of which 77.3% (157/203) were younger than 6 years old. Among 163 patients with the test for macrolide resistance, 90.2% cases (147/163) were macrolide-resistant M. pneumoniae. Severe M. pneumoniae pneumonia-associated organ dysfunction included acute respiratory failure (203 cases, 100%), followed by cardiovascular disorder (79/203, 38.9%), gastrointestinal dysfunction (24/203, 11.8%). The main complications were pleural effusion (79/203, 38.9%), capillary leak syndrome (58/203, 28.6%), and plastic bronchitis (20/203, 9.9%). All patients needed respiratory support, including 64.5% patients (131/203) who received mechanical ventilation and 35.5% patients (72/203) who received high-flow nasal oxygen. Twenty-five patients (12.3%) treated with continuous renal replacement therapy and nine cases (4.4%) received extracorporeal membrane oxygenation. The case fatality rate was 3.9% (8/203). Furthermore, cardiovascular dysfunction, liver injury, or multiple organ dysfunction syndrome were associated with longer mechanical ventilation duration, delayed PICU discharge, and high hospital mortality. Coinfection was a risk factor of delayed PICU discharge. CONCLUSIONS: Children with severe M. pneumoniae pneumonia mainly occur under the age of 6 years, showing a high proportion of extrapulmonary organ dysfunction and macrolide resistances. Extrapulmonary organ dysfunction and coinfection are associated with worse outcomes. The overall mortality is relatively low after treated with appreciate antibiotics, respiratory support, and extracorporeal life support.

19.
Mol Ther Nucleic Acids ; 23: 797-810, 2021 Mar 05.
Article En | MEDLINE | ID: mdl-33614230

Aberrant expression of lysyl oxidase-like 1 (LOXL1) reportedly leads to fibrous diseases. Recent studies have revealed its role in cancers. In this study, we observed an elevated level of LOXL1 in the tissues and sera of patients with intrahepatic cholangiocarcinoma (ICC) compared with levels in nontumor tissues and sera of unaffected individuals. Overexpression of LOXL1 in RBE and 9810 cell lines promoted cell proliferation, colony formation, and metastasis in vivo and in vitro and induced angiogenesis. In contrast, depletion of LOXL1 showed the opposite effects. We further showed that LOXL1 interacted with fibulin 5 (FBLN5), which regulates angiogenesis, through binding to the αvß3 integrin in an arginine-glycine-aspartic (Arg-Gly-Asp) domain-dependent mechanism and enhanced the focal adhesion kinase (FAK)-mitogen-activated protein kinase (MAPK) signaling pathway inside vascular endothelial cells. Our findings shed light on the molecular mechanism underlying LOXL1 regulation of angiogenesis in ICC development and indicate that the LOXL1-FBLN5/αvß3 integrin/FAK-MAPK axis might be the critical pathological link leading to angiogenesis in ICC.

20.
BMC Pulm Med ; 21(1): 40, 2021 Jan 25.
Article En | MEDLINE | ID: mdl-33494739

BACKGROUND: Lung ultrasound score is a potential method for determining pulmonary edema in acute respiratory distress syndrome (ARDS). Continuous renal replacement therapy (CRRT) has become the preferred modality to manage fluid overload during ARDS. The aim of this study was to evaluate the value of lung ultrasound (LUS) score on assessing the effects of CRRT on pulmonary edema and pulmonary function in pediatric ARDS. METHODS: We conducted a prospective cohort study in 70 children with moderate to severe ARDS in a tertiary university pediatric intensive care unit from January 2016 to December 2019. 37 patients received CRRT (CRRT group) and 33 patients treated by conventional therapy (Non-CRRT group). LUS score was measured within 2 h identified ARDS as the value of 1st, and the following three days as the 2nd, 3rd, and 4th. We used Spearman correlation analysis to develop the relationship between LUS score and parameters related to respiratory dynamics, clinical outcomes as well as daily fluid balance during the first four days after ARDS diagnosed. RESULTS: The 1st LUS score in CRRT group were significantly higher than Non-CRRT group (P < 0.001), but the LUS score decreased gradually following CRRT (P < 0.001). LUS score was significantly correlated with Cdyn (dynamic lung compliance) (1st: r = - 0.757, 2nd: r = - 0.906, 3rd: r = - 0.885, 4th: r = - 0.834), OI (oxygenation index) (1st: r = 0.678, 2nd: r = 0.689, 3rd: r = 0.486, 4th: r = 0.324) based on 1st to 4th values (all P < 0.05). Only values of the 3rd and 4th LUS score after ARDS diagnosed were correlated with duration of mechanical ventilation [1st: r = 0.167, P = 0.325; 2nd: r = 0.299, P = 0.072; 3rd: r = 0.579, P < 0.001; 4th: r = 0.483, P = 0.002]. LUS score decreased from 22 (18-25) to 15 (13-18) and OI decreased from 15.92 (14.07-17.73) to 9.49 (8.70-10.58) after CRRT for four days (both P < 0.001). CONCLUSIONS: LUS score is significantly correlated with lung function parameters in pediatric ARDS. The improvement of pulmonary edema in patient with ARDS received CRRT can be assessed by the LUS score. Trial registration CCTR, ChiCTR-ONC-16009698. Registered 1 November 2016, prospectively registered, http://www.chictr.org.cn/edit.aspx?pid=16535&htm=4 . This study adheres to CONSORT guidelines.


Hemofiltration/methods , Pulmonary Edema/diagnostic imaging , Pulmonary Edema/therapy , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Adolescent , Adult , Blood Gas Analysis , Child , China , Female , Humans , Intensive Care Units, Pediatric , Lung/diagnostic imaging , Male , Middle Aged , Prognosis , Prospective Studies , Ultrasonography , Young Adult
...