Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630936

RESUMEN

With the continuous advancement of global industrialization, a large amount of organic and inorganic pollutants have been discharged into the environment, which is essential for human survival. Consequently, the issue of water environment pollution has become increasingly severe. Photocatalytic technology is widely used to degrade water pollutants due to its strong oxidizing performance and non-polluting characteristics, and BiVO4-based photocatalysts are one of the ideal raw materials for photocatalytic reactions. However, a comprehensive global analysis of the factors influencing the photocatalytic performance of BiVO4-based photocatalysts is currently lacking. Here, we performed a meta-analysis to investigate the differences in specific surface area, kinetic constants, and the pollutant degradation performance of BiVO4-based photocatalysts under different preparation and degradation conditions. It was found that under the loading condition, all the performances of the photocatalysts can be attributed to the single BiVO4 photocatalyst. Moreover, loading could lead to an increase in the specific surface area of the material, thereby providing more adsorption sites for photocatalysis and ultimately enhancing the photocatalytic performance. Overall, the construct heterojunction and loaded nanomaterials exhibit a superior performance for BiVO4-based photocatalysts with 136.4% and 90.1% improvement, respectively. Additionally, within a certain range, the photocatalytic performance increases with the reaction time and temperature.

2.
Sci Total Environ ; 872: 162307, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36804989

RESUMEN

Although the effects of reductive soil disinfestation (RSD) in soil sterilization have been proven in several countries, the potential risks of trace metal elements (TMEs) caused by RSD require further assessment. Here, freshly Cd-spiked soil and historically contaminated greenhouse soil were exposed to RSD and the fates of TMEs, Cd, Co, Cu, Ni, Pb, and Zn, were investigated. All RSD treatments lasted for 21 days and subsamples were collected at different time intervals. Samples were open-air incubated for another 7 days until day 28 to simulate the situation after drainage. The bioavailability and geochemical fractionation of TMEs were investigated based on single and sequential extraction procedures and the environmental risks were assessed. The results showed that RSD increased the relative abundance of Firmicutes and Bacteroidetes, and the content of functional groups, including Fe, Mn, and S compounds respirations increased after RSD, highlighting the possible reductive dissolution of FeMn oxides and precipitation of TMEs. The dissolution decreased the reducible fractions of TMEs and increased the acid-soluble fractions of Co, Ni, Pb, and Zn, in the European Community Bureau of Reference results, reflecting the activation of TMEs in soils. However, the precipitation of sulfate resulted in the stabilization of Cd and Cu in two types of soils, increased their residual fractions, and decreased their acid-soluble fractions and bioavailabilities. After drainage, because the influence caused by precipitation rapidly disappeared and the impact of FeMn oxides dissolution remained, the acid-solubility of TMEs was greater than their initial status in the two soils. Furthermore, as a highly toxic metal, the activation of Cd at 28 days caused the rapid increase of ecological risks, which is particularly concerning. The results suggest that RSD temporarily increases the potential risks of TMEs and that certain measures must be taken.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Oligoelementos , Metales Pesados/análisis , Suelo/química , Cadmio/análisis , Plomo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Oligoelementos/análisis
3.
J Hazard Mater ; 441: 129928, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36113349

RESUMEN

This study investigates the performance of a pilot-scale submerged hollow fiber (HF) ultrafiltration (UF) polytetrafluoroethylene (PTFE) membrane filtration system for the treatment of two different types of oily seawater (i.e., seawater contaminated with light and heavy crude oil). The effects of membrane flux and aeration flow rate on membrane performance and the removal efficiency of different fractions of hydrocarbon, including polycyclic aromatic hydrocarbons (PAHs) were examined. The results for both heavy and light crude oil contaminated wastewater reveal that total petroleum hydrocarbon (TPH) removal efficiency of more than 91% was achieved. This research paper determined the optimal operational parameters for an HF membrane filtration system to obtain a good TPH removal efficiency. This system can easily be upscaled and placed on a barge to treat oily wastewater generated from marine oil spills, which can significantly improve the oil spill response capacity.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos , Aceites , Petróleo/análisis , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Politetrafluoroetileno , Agua de Mar , Aguas Residuales
4.
J Environ Manage ; 301: 113840, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607138

RESUMEN

This study investigated the long-term leachability of antimony (Sb) in a smelting residue (39519 mg/kg) solidified/stabilized by reactive magnesia (MgO). Different dosages of MgO (0% as control, 2%, 5%, and 10% on a dry basis) were compared, and the long-term performance was evaluated by an accelerated exposure test consist of 20 consecutive leaching steps with simulated strong acid rain (SAR, HNO3: H2SO4 = 1:2, pH = 3.20) as the extractant. Notably, the MgO treatments efficiently reduced the Sb leachability. Compared to the original slag (8.3 mg/L), the leaching concentrations based on a Chinese standard HJ/T299-2007 were reduced by 58%, 79%, 85%, and 86% at MgO dosages of 0%, 2%, 5%, and 10%, respectively. Because the studied slag was rich in oxides like SiO2, CaO, and MgO, the hydration reactions probably happened during the aging processes with oxic water. It was inferred that the formed hydration products have a self-solidification/stabilization function to suppress the Sb leaching from the solid phase. The mineralogical characterization results proved that the hydrated Mg(OH)2 played an essential role in the decrease of Sb leachability. Besides, the MgO addition promoted the hydration of this smelting slag and formed new hydrate gels that immobilize Sb in this slag. Our results confirmed that MgO-amended slags were resistant to continuous SAR corrosion. Compared to the control, the dosage of 5% MgO could effectively reduce the cumulatively released Sb by 57%, with only 0.46% of total Sb could be leached. The decomposition of Mg(OH)2 and hydrate gels determined the re-release of Sb in a long term. Our work has demonstrated that reactive MgO amendment could be potentially selected as an effective strategy for the treatment of Sb-containing smelting residues in field conditions.


Asunto(s)
Lluvia Ácida , Antimonio , Óxido de Magnesio , Dióxido de Silicio
5.
J Environ Manage ; 303: 114161, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861500

RESUMEN

To dispose of the medical waste generated during the COVID-19 pandemic, a new type of mobile emergency incinerator (MEI) was used in Huoshenshan Hospital, Wuhan, China, and consequently, it produced a number of medical bottom ashs (MBAs). In this study, the characterization and environmental risk evaluation of these MBAs were conducted to evaluate the disposal effect of this MEI used during the pandemic. Three types of leaching tests, EN 12457-2, TCLP 1311, and HJ/T 299-2007, were compared to investigate the release behaviors of major and trace elements from these MBAs. Lack of detection of COVID-19 in MBAs showed that this mobile emergency incinerator could thoroughly eliminate the COVID-19 virus in medical wastes to avoid secondary transmission. The results indicated that the increasing usage of chlorinated disinfectants and physiological saline solutions resulted in high Cl contents in MBAs. In addition, the increasing usage of polypropylene (PP) products changed the chemical properties and compositions of MBAs, with Ca as the main element. The leachability investigation revealed that the main metals in leachates were Ca, Na and K, and the toxic heavy metals such as Zn, Pb, Cu, and Cr in MBAs were difficult to extract because of the high pH (>12) of these MBAs. This study could provide consultation for the treatment and management of MBAs produced from MEIs dealing with emergent infectious diseases such as COVID-19.


Asunto(s)
COVID-19 , Residuos Sanitarios , Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Hospitales , Humanos , Incineración , Metales Pesados/análisis , Pandemias , SARS-CoV-2
6.
Ecotoxicol Environ Saf ; 209: 111830, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33387773

RESUMEN

In this study, a modified fir barks (MFB) was prepared by mixing fir barks (FB) and white-rot fungi (Phanerodontia chrysosporium) under aerobic fermentation. The potential of MFB for Cd2+ adsorption was investigated by batch experiments combined with kinetic, isotherm, and thermodynamics analyses. The results revealed that the modification greatly increased the porous structures on the surfaces of fir barks and the surface area of MFB was much higher than that of FB. As a result, the adsorption capacity of Cd2+ on MFB (17.4 mg g-1) was more than two times higher than that on FB (7.2 mg g-1), and the adsorption of Cd2+ on MFB was controlled by physisorption and chemisorption. The immobilization of Cd by MFB in a contaminated agricultural soil was also investigated. The effect of MFB on the bioavailability of Cd was investigated using a leaching test (the European standard EN 12457-2) combined with a typical sequential extraction procedure (the community bureau of reference, BCR). The experimental results showed that the Cd leachability was reduced by 71% when the added MFB dosage was 30 mg g-1. Besides, the MFB amendment could transform Cd from unstable geochemical fractions into more stable fractions. In total, the MFB, as a chemical-free and eco-friendly material, could be potentially employed for in-situ remediation of Cd-contaminated agricultural soils.


Asunto(s)
Cadmio/análisis , Chrysosporium , Restauración y Remediación Ambiental/métodos , Corteza de la Planta/química , Contaminantes del Suelo/análisis , Contaminación del Agua/análisis , Adsorción , Agricultura , Disponibilidad Biológica , Suelo/química , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA