Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(1): 15-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856777

RESUMEN

Oomycete pathogens secrete numerous crinkling and necrosis proteins (CRNs) to manipulate plant immunity and promote infection. However, the functional mechanism of CRN effectors is still poorly understood. Previous research has shown that the Phytophthora sojae effector PsCRN108 binds to the promoter of HSP90s and inhibits their expression, resulting in impaired plant immunity. In this study, we found that in addition to HSP90, PsCRN108 also suppressed other Heat Shock Protein (HSP) family genes, including HSP40. Interestingly, PsCRN108 inhibited the expression of NbHSP40 through its promoter, but did not directly bind to its promoter. Instead, PsCRN108 interacted with NbCAMTA2, a negative regulator of plant immunity. NbCAMTA2 was a negative regulator of NbHSP40 expression, and PsCRN108 could promote such inhibition activity of NbCAMTA2. Our results elucidated the multiple roles of PsCRN108 in the suppression of plant immunity and revealed a new mechanism by which the CRN effector hijacked transcription factors to affect immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Phytophthora , Phytophthora/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Choque Térmico/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas
2.
Plant Physiol ; 191(2): 925-945, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461945

RESUMEN

Oomycete pathogens secrete numerous effectors to manipulate plant immunity and promote infection. However, relatively few effector types have been well characterized. In this study, members of an FYVE domain-containing protein family that are highly expanded in oomycetes were systematically identified, and one secreted protein, PsFYVE1, was selected for further study. PsFYVE1 enhanced Phytophthora capsici infection in Nicotiana benthamiana and was necessary for Phytophthora sojae virulence. The FYVE domain of PsFYVE1 had PI3P-binding activity that depended on four conserved amino acid residues. Furthermore, PsFYVE1 targeted RNA-binding proteins RZ-1A/1B/1C in N. benthamiana and soybean (Glycine max), and silencing of NbRZ-1A/1B/1C genes attenuated plant immunity. NbRZ-1A was associated with the spliceosome complex that included three important components, glycine-rich RNA-binding protein 7 (NbGRP7), glycine-rich RNA-binding protein 8 (NbGRP8), and a specific component of the U1 small nuclear ribonucleoprotein complex (NbU1-70K). Notably, PsFYVE1 disrupted NbRZ-1A-NbGRP7 interaction. RNA-seq and subsequent experimental analysis demonstrated that PsFYVE1 and NbRZ-1A not only modulated pre-mRNA alternative splicing (AS) of the necrotic spotted lesions 1 (NbNSL1) gene, but also co-regulated transcription of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (NbHCT), ethylene insensitive 2 (NbEIN2), and sucrose synthase 4 (NbSUS4) genes, which participate in plant immunity. Collectively, these findings indicate that the FYVE domain-containing protein family includes potential uncharacterized effector types and also highlight that plant pathogen effectors can regulate plant immunity-related genes at both AS and transcription levels to promote disease.


Asunto(s)
Phytophthora , Phytophthora/fisiología , Proteínas/genética , Glycine max/metabolismo , Expresión Génica , Glicina/metabolismo , Enfermedades de las Plantas/genética
3.
Front Microbiol ; 13: 914035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694285

RESUMEN

Anthracnose caused by plant pathogenic Colletotrichum fungi results in large economic losses in field crop production worldwide. To aid the establishment of plant host infection, Colletotrichum pathogens secrete numerous effector proteins either in apoplastic space or inside of host cells for effective colonization. Understanding these effector repertoires is critical for developing new strategies for resistance breeding and disease management. With the advance of genomics and bioinformatics tools, a large repertoire of putative effectors has been identified in Colletotrichum genomes, and the biological functions and molecular mechanisms of some studied effectors have been summarized. Here, we review recent advances in genomic identification, understanding of evolutional characteristics, transcriptional profiling, and functional characterization of Colletotrichum effectors. We also offer a perspective on future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...