Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Food Chem ; 452: 139551, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38723572

This study explored the mechanism of interaction between chlorogenic acid (CA) and protein fibrils (PF) as well as the effects of varying the CA/PF concentration ratio on antibacterial activity. Analysis of various parameters, such as ζ-potential, thioflavin T fluorescence intensity, surface hydrophobicity, and free sulfhydryl groups, revealed that the interaction between PF and CA altered the structure of PF. Fluorescence analysis revealed that hydrogen bonding and hydrophobic interactions were the primary interaction forces causing conformational rearrangement, resulting in a shorter, more flexible, and thicker fibril structure, as observed through transmission electron microscopy. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and X-ray diffraction analyses revealed that the characteristic fibril structure was destroyed when the CA/PF ratio exceeded 0.05. Notably, the CA-PF complexes inhibited the growth of Escherichia coli and Staphylococcus aureus and also exhibited antioxidant activity. Overall, this study expands the application prospects of CA and PF in the food industry.


Anti-Bacterial Agents , Chlorogenic Acid , Escherichia coli , Soybean Proteins , Staphylococcus aureus , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Soybean Proteins/chemistry , Soybean Proteins/pharmacology , Hydrophobic and Hydrophilic Interactions , Glycine max/chemistry , Glycine max/growth & development
2.
Plant Commun ; 5(2): 100791, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38168637

The domestication of Brassica oleracea has resulted in diverse morphological types with distinct patterns of organ development. Here we report a graph-based pan-genome of B. oleracea constructed from high-quality genome assemblies of different morphotypes. The pan-genome harbors over 200 structural variant hotspot regions enriched in auxin- and flowering-related genes. Population genomic analyses revealed that early domestication of B. oleracea focused on leaf or stem development. Gene flows resulting from agricultural practices and variety improvement were detected among different morphotypes. Selective-sweep and pan-genome analyses identified an auxin-responsive small auxin up-regulated RNA gene and a CLAVATA3/ESR-RELATED family gene as crucial players in leaf-stem differentiation during the early stage of B. oleracea domestication and the BoKAN1 gene as instrumental in shaping the leafy heads of cabbage and Brussels sprouts. Our pan-genome and functional analyses further revealed that variations in the BoFLC2 gene play key roles in the divergence of vernalization and flowering characteristics among different morphotypes, and variations in the first intron of BoFLC3 are involved in fine-tuning the flowering process in cauliflower. This study provides a comprehensive understanding of the pan-genome of B. oleracea and sheds light on the domestication and differential organ development of this globally important crop species.


Brassica , Domestication , Brassica/genetics , Genomics , Genome, Plant/genetics , Indoleacetic Acids
3.
Ultrason Sonochem ; 101: 106711, 2023 Dec.
Article En | MEDLINE | ID: mdl-38061250

In this study, oil bodies (OBs) loaded with curcumin (Cur) were successfully prepared via an ultrasonic and pH-driven method. Ultrasonic treatment significantly improved the encapsulation efficiency (EE) and loading capacity (LC) of Cur, producing OB particles with small size, uniform distribution, and high ζ-potential absolute values. When the ultrasonic power was 200 W, the EE, LC, and ζ-potential absolute value were the greatest (88.27 %, 0.044 %, and -25.71 mV, respectively), and the OBs possessed the highest yellowness, representing the best treatment result. The confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (cryo-SEM) results was also intuitionally shown that. Moreover, circular dichroism (CD) proved that ultrasonic treatment could unfold the surface protein structure, further enhancing the stability. Therefore, the cream index (CI), peroxide value (POV), and thiobarbituric acid reactive substances (TBARS) were the lowest when the ultrasonic power was 200 W. In this case, the Cur loaded in OBs was well protected against hostile conditions, evidenced by the highest Cur retention rate and the lowest degradation rate constant. Finally, the in vitro gastrointestinal digestion simulation results showed that the ultrasonic treatment effectively increased the release of FFA, bioaccessibility, and stability of Cur, especially when the ultrasonic power was 200 W. This research offers a new OB-based delivery system to stabilize, deliver, and protect Cur for food processing.


Curcumin , Curcumin/chemistry , Emulsions/chemistry , Lipid Droplets/metabolism , Ultrasonics , Digestion , Hydrogen-Ion Concentration , Particle Size
4.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article En | MEDLINE | ID: mdl-38069101

Plasmodiophora brassicae (P. brassicae) is a soil-born pathogen worldwide and can infect most cruciferous plants, which causes great yield decline and economic losses. It is not well known how microbial diversity and community composition change during P. brassicae infecting plant roots. Here, we employed a resistant and a susceptible pakchoi cultivar with and without inoculation with P. brassicae to analyze bacterial and fungal diversity using 16S rRNA V3-V4 and ITS_V1 regions, respectively. 16S rRNA V3-V4 and ITS_V1 regions were amplified and sequenced separately. Results revealed that both fungal and bacterial diversity increased, and composition was changed in the rhizosphere soil of the susceptible pakchoi compared with the resistant cultivar. In the four groups of R_mock, S_mock, R_10d, and S_10d, the most relatively abundant bacterium and fungus was Proteobacteria, accounting for 61.92%, 58.17%, 48.64%, and 50.00%, respectively, and Ascomycota, accounting for 75.11%, 63.69%, 72.10%, and 90.31%, respectively. A total of 9488 and 11,914 bacteria were observed uniquely in the rhizosphere soil of resistant and susceptible pakchoi, respectively, while only 80 and 103 fungi were observed uniquely in the correlated soil. LefSe analysis showed that 107 and 49 differentially abundant taxa were observed in bacteria and fungi. Overall, we concluded that different pakchoi cultivars affect microbial diversity and community composition, and microorganisms prefer to gather around the rhizosphere of susceptible pakchoi. These findings provide a new insight into plant-microorganism interactions.


Microbiota , Mycobiome , Plasmodiophorida , Microbiota/genetics , Plasmodiophorida/genetics , RNA, Ribosomal, 16S/genetics , Rhizosphere , Fungi/genetics , Soil Microbiology , Bacteria/genetics , Soil , Plant Roots/microbiology
5.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article En | MEDLINE | ID: mdl-37958694

Downy mildew caused by the obligate parasite Hyaloperonospora brassicae is a devastating disease for Brassica species. Infection of Hyaloperonospora brassicae often leads to yellow spots on leaves, which significantly impacts quality and yield of pakchoi. In the present study, we conducted a comparative transcriptome between the resistant and susceptible pakchoi cultivars in response to Hyaloperonospora brassicae infection. A total of 1073 disease-resistance-related differentially expressed genes were identified using a Venn diagram. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these genes were mainly involved in plant-pathogen interaction, plant hormone signal transduction, and other photosynthesis-related metabolic processes. Analysis of the phytohormone content revealed that salicylic acid increased significantly in the resistant material after inoculation with Hyaloperonospora brassicae, whereas the contents of jasmonic acid, abscisic acid, and 1-aminocyclopropane-1-carboxylic acid decreased. Exogenous salicylic acid treatment also significantly upregulated Hyaloperonospora brassicae-induced genes, which further confirmed a crucial role of salicylic acid during pakchoi defense against Hyaloperonospora brassicae. Based on these findings, we suggest that the salicylic-acid-mediated signal transduction contributes to the resistance of pakchoi to downy mildew, and PAL1, ICS1, NPR1, PR1, PR5, WRKY70, WRKY33, CML43, CNGC9, and CDPK15 were involved in this responsive process. Our findings evidently contribute to revealing the molecular mechanism of pakchoi defense against Hyaloperonospora brassicae.


Oomycetes , Peronospora , Humans , Transcriptome , Plant Diseases/genetics , Oomycetes/genetics , Gene Expression Profiling , Disease Resistance/genetics , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Disease Susceptibility
6.
Plants (Basel) ; 12(21)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37960062

The RNA-binding glycine-rich proteins (RBGs) of the glycine-rich protein family play vital roles in regulating gene expression both at the transcriptional and post-transcriptional levels. However, the members and functions in response to abiotic stresses of the RBG gene family remain unclear in Brassica oleracea. In this study, a total of 19 BoiRBG genes were identified through genome-wide analysis in broccoli. The characteristics of BoiRBG sequences and their evolution were examined. An analysis of synteny indicated that the expansion of the BoiRBG gene family was primarily driven by whole-genome duplication and tandem duplication events. The BoiRBG expression patterns revealed that these genes are involved in reaction to diverse abiotic stress conditions (i.e., simulated drought, salinity, heat, cold, and abscisic acid) and different organs. In the present research, the up-regulation of BoiRBGA13 expression was observed when subjected to both NaCl-induced and cold stress conditions in broccoli. Moreover, the overexpression of BoiRBGA13 resulted in a noteworthy reduction in taproot lengths under NaCl stress, as well as the inhibition of seed germination under cold stress in broccoli, indicating that RBGs play different roles under various stresses. This study provides insights into the evolution and functions of BoiRBG genes in Brassica oleracea and other Brassicaceae family plants.

7.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article En | MEDLINE | ID: mdl-37762111

Hypocotyl length is a critical determinant for the efficiency of mechanical harvesting in pakchoi production, but the knowledge on the molecular regulation of hypocotyl growth is very limited. Here, we report a spontaneous mutant of pakchoi, lhy7.1, and identified its characteristics. We found that it has an elongated hypocotyl phenotype compared to the wild type caused by the longitudinal growth of hypocotyl cells. Different light quality treatments, transcriptome, and proteomic analyses were performed to reveal the molecular mechanisms of hypocotyl elongation. The data showed that the hypocotyl length of lhy7.1 was significantly longer than that of WT under red, blue, and white lights but there was no significant difference under dark conditions. Furthermore, we used transcriptome and label-free proteome analyses to investigate differences in gene and protein expression levels between lhy7.1 and WT. At the transcript level, 4568 differentially expressed genes (DEGs) were identified, which were mainly enriched in "plant hormone signal transduction", "photosynthesis", "photosynthesis-antenna proteins", and "carbon fixation in photosynthetic organisms" pathways. At the protein level, 1007 differentially expressed proteins (DEPs) were identified and were mainly enriched in photosynthesis-related pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network of hypocotyl elongation involving plant hormone signal transduction and photosynthesis-related pathways. The findings of this study help elucidate the regulatory mechanisms of hypocotyl elongation in lhy7.1.


Hypocotyl , Proteome , Proteome/genetics , Hypocotyl/genetics , Plant Growth Regulators , Proteomics , Transcriptome
8.
Clin Chim Acta ; 540: 117218, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36610467

BACKGROUND: Pannexin-1 is a nonselective, large pore and voltage gated channel protein, whose activation may aggravate acute brain injury. We ascertained the clinical significance of serum pannexin-1 as a prognostic biomarker of acute intracerebral hemorrhage (ICH). METHODS: In this prospective, observational study of 124 acute supratentorial ICH patients and 124 healthy controls, serum pannexin-1 concentrations were determined. Admission National Institutes of Health Stroke Scale (NIHSS) score and hematoma volume were used for assessment of hemorrhagic severity, post-stroke 6-month modified Rankin scale (mRS) score was registered to reflect clinical outcome and early neurologic deterioration (END) and 6-month poor outcome (mRS score of 3-6) were regarded as the 2 prognostic parameters. Their associations with serum pannexin-1 concentrations were investigated using multivariate analysis. The predictive performance was evaluated in terms of area under receiver operating characteristic curve (AUC). RESULTS: In comparison to controls, significantly increased serum pannexin-1 concentrations after ICH (median, 6.8 vs. 2.7 mg/ml) were independently correlative with NIHSS score (ß, 0.193; 95% CI: 0.086-0.300), hematoma volume (ß, 0.641; 95% CI: 0.423-0.859) and mRS score (ß, 0.199; 95% CI: 0.065-0.174), were independently predictive of END (OR, 1.176; 95% CI: 1.081-1.280) and poor outcome (odds ratio, 1.218; 95% CI: 1.059-1.400), as well as were efficiently discriminative of END (AUC, 0.764; 95% CI: 0.663-0.864) and poor 6-month outcome (AUC, 0.790; 95% CI: 0.711-0.870). Serum pannexin-1 combined with NIHSS score and hematoma volume (AUC, 0.908; 95% CI: 0.857-0.960) displayed significantly higher predictive ability for poor 6-month outcome than NIHSS score and hematoma volume alone (both P < 0.05). CONCLUSION: Rising serum pannexin-1 concentrations following ICH, in strong correlation with hemorrhagic severity, independently distinguish the risk of END and 90-day poor outcome. Assumably, serum pannexin-1 may represent a valuable prognostic biomarker of ICH.


Cerebral Hemorrhage , Hematoma , Humans , Biomarkers , Cerebral Hemorrhage/diagnosis , Longitudinal Studies , Patient Acuity , Prognosis , Prospective Studies
10.
ACS Nano ; 16(9): 14679-14692, 2022 09 27.
Article En | MEDLINE | ID: mdl-36044715

Multifunctional sensing systems play important roles in a variety of applications, incluing health surveillance, intelligent prothetics, human-machine/ambinece interfaces, and many others. The richness of the signal and the decoupling among multiple parameters are essential for simultaneous, multimodal measurements. However, current multifunctional sensing fails to decouple interferences from various signals. Here, we propose a double-sided wearable system that both enables multifunctional sensing and avoids the interferences among multiple parameters. Specifically, the sensitivities of system modules to strain are controlled through customizing the pattern and morphology of sensing electrodes as well as the modification of active materials. Compensation of temperature drift and selection of sensing mechanisms ensure the thermal stability of the system. The encapsulation of modules resists the interferences of proximity, normal pressure, and gas molecules at the same time. A double-sided partition layout with serpentine interconnections reduces the effect of motion artifacts and ensures simultaneous operation of electrochemical-sensing modules. Cooperation among decoupled modules acts as the bridge between the perception of ambience changes and the timely feedback of the human body. In addition, to sense the signal at the interface, modules for energy harvesting and storage are also integrated into the system to broaden its application scenarios.


Wearable Electronic Devices , Electrodes , Humans
11.
Clin Chim Acta ; 533: 96-103, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35752306

BACKGROUND: Growth-arrest-specific protein 6 (Gas6) exerts nervous protective effects on acute brain injury. We endeavored to ascertain whether serum Gas6 concentrations are associated with severity, delayed cerebral ischemia (DCI) and prognosis following aneurysmal subarachnoid hemorrhage (aSAH). METHODS: We measured serum Gas6 concentrations of 124 aSAH patients. The Hunt-Hess scale and modified Fisher grading scale were used to evaluate illness severity. Multivariate analysis was utilized to determine relationships between serum Gas6 concentrations and severity, DCI plus 90-day unfavorable outcome (Glasgow outcome scale score of 1-3). RESULTS: Patients with unfavorable outcome or DCI had significantly higher serum Gas6 concentrations than other remainders (median, 35.0 vs 23.3 ng/ml; 36.1 vs 25.3 ng/ml; both P < 0.001). Serum Gas6 concentrations displayed independent correlations with Hunt-Hess scores (t = 5.518, P < 0.001) and modified Fisher scores (t = 3.531, P = 0.001). Serum Gas6 concentrations were independently associated with unfavorable outcome (OR: 1.125; 95% CI, 1.063-1.190; P = 0.014) and DCI (OR: 1.104; 95% CI, 1.041-1.170; P = 0.010) as well as exhibited AUCs of 0.786 (95% CI, 0.703-0.854) and 0.753 (95% CI, 0.668-0.826) for predicting unfavorable outcome and DCI respectively. Its discriminatory ability for risk of unfavorable outcome or DCI was similar to those of Hunt-Hess scores and modified Fisher scores (all P > 0.05). CONCLUSIONS: Serum Gas6 concentrations are independently associated with stroke severity and worse clinical outcome after aSAH, indicating serum Gas6 may be a potential prognostic biomarker for aSAH.


Brain Ischemia , Stroke , Subarachnoid Hemorrhage , Cerebral Infarction , Humans , Prospective Studies , Stroke/complications
12.
Adv Mater ; 33(40): e2102691, 2021 Oct.
Article En | MEDLINE | ID: mdl-34396604

The advent of functional materials offers tremendous potential in a broad variety of areas such as electronics, robotics, and energy devices. Magnetic materials are an attractive candidate that enable multifunctional devices with capabilities in both sensing and actuation. However, current magnetic devices, especially those with complex motion modalities, rely on permanently magnetized materials with complicated, non-uniform magnetization profiles. Here, based on magnetic materials with temporary-magnetization, a mechanically guided assembly process successfully converts laser-patterned 2D magnetic materials into judiciously engineered 3D structures, with dimensions and geometries ranging from mesoscale 3D filaments, to arrayed centimeter-scale 3D membranes. With tailorable mechanical properties and highly adjustable geometries, 3D soft structures can exhibit various tethered locomotions under the precise control of magnetic fields, including local deformation, unidirectional tilting, and omnidirectional rotation, and can serve as dynamic surfaces for further integration with other functional materials or devices. Examples demonstrated here focus on energy-harvesting systems, including 3D piezoelectric devices for noncontact conversion of mechanical energy and active motion sensing, as well as 3D solar tracking systems. The design strategy and resulting magnetic-controlled 3D soft structures hold great promise not only for enhanced energy harvesting, but also for multimodal sensing, robotic interfaces, and biomedical devices.

13.
BMC Biol ; 19(1): 93, 2021 05 05.
Article En | MEDLINE | ID: mdl-33952264

BACKGROUND: Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. RESULTS: Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. CONCLUSIONS: This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding.


Brassica , Base Sequence , Brassica/genetics , Chromosome Mapping , Meristem , Plant Breeding
14.
Research (Wash D C) ; 2021: 4689869, 2021.
Article En | MEDLINE | ID: mdl-33880448

Handwritten signatures widely exist in our daily lives. The main challenge of signal recognition on handwriting is in the development of approaches to obtain information effectively. External mechanical signals can be easily detected by triboelectric nanogenerators which can provide immediate opportunities for building new types of active sensors capable of recording handwritten signals. In this work, we report an intelligent human-machine interaction interface based on a triboelectric nanogenerator. Using the horizontal-vertical symmetrical electrode array, the handwritten triboelectric signal can be recorded without external energy supply. Combined with supervised machine learning methods, it can successfully recognize handwritten English letters, Chinese characters, and Arabic numerals. The principal component analysis algorithm preprocesses the triboelectric signal data to reduce the complexity of the neural network in the machine learning process. Further, it can realize the anticounterfeiting recognition of writing habits by controlling the samples input to the neural network. The results show that the intelligent human-computer interaction interface has broad application prospects in signature security and human-computer interaction.

15.
ACS Appl Mater Interfaces ; 12(19): 22357-22364, 2020 May 13.
Article En | MEDLINE | ID: mdl-32293866

Self-powered electronic skin is a promising field for human-machine interfaces to the next generation of intelligent and interactive products due to its capability of including multiple physical parameters for sensing without additional energy supply. This paper reports a novel active multifunctional electronic skin capable of independently detecting contact trajectory, acceleration, velocity, and pressure based on the synchronized triboelectrification and piezoelectric effect. Motion trajectories in the full plane can be identified by using a net-cross electrodes configuration design. Under this electrode special structure design, the motion information such as velocity and acceleration can be accurately obtained by the time difference between the peak values of the triboelectric signal. Real-time detection of dynamic pressure with only two electrodes is achieved by a spacer-grid design and a high quality piezoelectric nanofiber film. By virtue of its high sensitivity and precision, a smart anti-counterfeiting signature system (SASS) can be achieved by this self-powered multifunctional electronic skin with the capability of recognizing the writing habits of people within a 100 ms error for security. It is also a promising candidate in terms of human-machine interaction, cyber security, and so on.


Computer Security/instrumentation , Fraud/prevention & control , Handwriting , Wearable Electronic Devices , Electric Power Supplies , Electrodes , Humans , Pressure
16.
BMC Genomics ; 21(1): 178, 2020 Feb 24.
Article En | MEDLINE | ID: mdl-32093614

BACKGROUND: The basic helix-loop-helix (bHLH) is the second largest gene family in the plant, some members play important roles in pistil development and response to drought, waterlogging, cold stress and salt stress. The bHLH gene family has been identified in many species, except for Brassica oleracea and B. napus thus far. This study aims to identify the bHLH family members in B. oleracea, B. rapa and B. napus, and elucidate the expression, duplication, phylogeny and evolution characters of them. RESULT: A total of 268 bHLH genes in B. oleracea, 440 genes in B. napus, and 251 genes in B. rapa, including 21 new bHLH members, have been identified. Subsequently, the analyses of the phylogenetic trees, conserved motifs and gene structures showed that the members in the same subfamily were highly conserved. Most Ka/Ks values of homologous gene were < 1, which indicated that these genes suffered from strong purifying selection for retention. The retention rates of BrabHLH and BolbHLH genes were 51.6 and 55.1%, respectively. The comparative expression patterns between B. rapa and B. napus showed that they had similar expression patterns in the root and contrasting patterns in the stems, leaves, and reproductive tissues. In addition, there were 41 and 30 differential expression bHLH genes under the treatments of ABA and JA, respectively, and the number of down regulation genes was significantly more than up regulation genes. CONCLUSION: In the present study, we identified and performed the comparative genomics analysis of bHLH gene family among B. oleracea, B. rapa and B. napus, and also investigated their diversity. The expression patterns between B. rapa and B. napus shows that they have the similar expression pattern in the root and opposite patterns in the stems, leaves, and reproduction tissues. Further analysis demonstrated that some bHLH gene members may play crucial roles under the abiotic and biotic stress conditions. This is the first to report on the bHLH gene family analysis in B. oleracea and B. napus, which can offer useful information on the functional analysis of the bHLH gene in plants.


Brassica/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Helix-Loop-Helix Motifs , Brassica napus/genetics , Brassica rapa/genetics , Gene Duplication , Gene Expression Profiling , Genome, Plant , Genomics , Phylogeny
17.
ACS Appl Mater Interfaces ; 11(42): 39219-39227, 2019 Oct 23.
Article En | MEDLINE | ID: mdl-31556591

Sensors with multifunctions have attracted great attention for their extensive application value, among which humidity sensing and pressure sensing are necessary to electronics undoubtedly because of the complex physical environment we live in. Inspired by the structure of skin, in this article, we design a new method to combine wrinkle structure with porous sponge structure and achieve a novel, flexible, compressible, and bifunctional sensor based on carbon nanotube-polydimethylsiloxane (CNT-PDMS) with functions of humidity sensing and pressure sensing. The performance of the humidity sensing part can be controlled by the ultraviolet and ozone (UVO) treatment time and CNT concentration, while the sensitivity of the pressure sensing part can be controlled by the CNT concentration and grinding time of sugar granules. The bifunctional sensor can easily sense approaching and touching of a hand, which shows great potential of alarming and protecting some electronics. Moreover, the bifunctional sensor can also be used in detecting human joint motions and breath conditions as a wearable and flexible health monitor.

18.
BMC Genomics ; 19(1): 728, 2018 Oct 03.
Article En | MEDLINE | ID: mdl-30285607

BACKGROUND: Cytokinin is a classical phytohormone that plays important roles in numerous plant growth and development processes. In plants, cytokinin signals are transduced by a two-component system, which involves many genes, including cytokinin response factors (CRFs). Although CRFs take vital part in the growth of Arabidopsis thaliana and Solanum lycopersicum, little information of the CRFs in the Brassica U-triangle species has been known yet. RESULTS: We identified and compared 141 CRFs in the diploids and amphidiploids of Brassica species, including B. rapa, B. oleracea, B. nigra, B. napus, and B. juncea. For all the 141 CRFs, the sequence and structure analysis, physiological and biochemical characteristics analysis were performed. Meanwhile, the Ka/Ks ratios of orthologous and paralogous gene pairs were calculated, which indicated the natural selective pressure upon the overall length or a certain part of the CRFs. The expression profiles of CRFs in different tissues and under various stresses were analyzed in B. oleracea, B. nigra, and B. napus. The similarities and differences in gene sequences and expression profiles among the homologous genes of these species were discussed. In addition, AtCRF11 and its ortholog BrCRF11a were identified to be related to primary root growth in Arabidopsis. CONCLUSION: This study performed a genome-wide comparative analysis of the CRFs in the diploids and amphidiploids of the Brassica U-triangle species. Many similarities and differences in gene sequences and expression profiles existed among the CRF homologous genes of these species. In the bioinformatics analysis, we found the close relativity of the CRF homologous genes in the Brassica A and C genomes and the distinctiveness of those in the B genome, and the CRF homologous genes in B subgenome were considerably influenced by the A subgenome of B. juncea. In addition, we identified a new function of the Clade V CRFs related to root growth, which also clarified the functional conservation between Arabidopsis and B. rapa. These results not only offer useful information on the functional analysis of CRFs but also provide new insights into the evolution of Brassica species.


Brassica/genetics , Diploidy , Evolution, Molecular , Plant Proteins/genetics , Polyploidy , Transcription Factors/genetics , Brassica/drug effects , Brassica/growth & development , Brassica/physiology , Chromosomes, Plant/genetics , Phylogeny , Plant Roots/growth & development , Promoter Regions, Genetic/genetics , Salts/pharmacology , Selection, Genetic , Stress, Physiological/drug effects , Stress, Physiological/genetics , Synteny
19.
BMC Genomics ; 19(1): 174, 2018 03 02.
Article En | MEDLINE | ID: mdl-29499648

BACKGROUND: Members of the MtN3/saliva/SWEET gene family are present in various organisms and are highly conserved. Their precise biochemical functions remain unclear, especially in Chinese cabbage. Based on the whole genome sequence, this study aims to identify the MtN3/saliva/SWEETs family members in Chinese cabbage and to analyze their classification, gene structure, chromosome distribution, phylogenetic relationship, expression pattern, and biological functions. RESULTS: We identified 34 SWEET genes in Chinese cabbage and analyzed their localization on chromosomes and transmembrane regions of their corresponding proteins. Analysis of a phylogenetic tree indicated that there were at least 17 supposed ancestor genes before the separation in Brassica rapa and Arabidopsis. The expression patterns of these genes in different tissues and flower developmental stages of Chinese cabbage showed that they are mainly involved in reproductive development. The Ka/Ks ratio between paralogous SWEET gene pairs of B. rapa were far less than 1. In our previous study, At2g39060 homologous gene Bra000116 (BraSWEET9, also named BcNS, Brassica Nectary and Stamen) played an important role during flower development in Chinese cabbage. Instantaneous expression experiments in onion epidermal cells showed that the gene encoding this protein is localized to the plasma membrane. A basal nectary split is the phenotype of transgenic plants transformed with the antisense expression vector. CONCLUSION: This study is the first to perform a sequence analysis, structures analysis, physiological and biochemical characteristics analysis of the MtN3/saliva/SWEETs gene in Chinese cabbage and to verify the function of BcNS. A total of 34 SWEET genes were identified and they are distributed among ten chromosomes and one scaffold. The Ka/Ks ratio implies that the duplication genes suffered strong purifying selection for retention. These genes were differentially expressed in different floral organs. The phenotypes of the transgenic plants indicated that BcNs participates in the development of the floral nectary. This study provides a basis for further functional analysis of the MtN3/saliva/SWEETs gene family.


Brassica rapa/metabolism , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Plant Proteins/metabolism , Brassica rapa/genetics , Brassica rapa/growth & development , Chromosome Mapping/methods , Chromosomes, Plant , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phylogeny , Plant Proteins/genetics , Whole Genome Sequencing/methods
20.
Plant Cell Physiol ; 59(1): 179-189, 2018 Jan 01.
Article En | MEDLINE | ID: mdl-29145642

The plant hormone auxin plays critical roles in plant growth and development. Auxin response factors (ARFs) are a class of transcription factors which regulate auxin-mediated gene expression. While the functions of ARFs in sporophytic development have been well characterized, their functions specific to gametophytic development have not been studied extensively. In this study, Arabidopsis ARF genes were selectively down-regulated in gametophytes by misexpression of targeted microRNAs (amiRARF234, amiRARFMP and MIR167a) to silence AtARF2-AtAEF4, AtARF5, AtARF6 and AtARF8. Embryo sacs in amiRARF234- and amiRARFMP-expressing plants exhibited identity defects in cells at the micropylar pole, such as formation of two cells with egg cell-like morphology, concomitant with loss of synergid marker expression and seed abortion. The pollen grains of the transgenic plants were morphologically aberrant and unviable, and the inclusions and nuclei were lost in the abnormal pollen grains. However, plants misexpressing MIR167a showed no obvious abnormal phenotypes in the embryo sacs and pollen grains. Overall, these results provide evidence that AtARF2-AtARF4 and AtARF5 play significant roles in regulating both female and male gametophyte development in Arabidopsis.


Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Gametogenesis, Plant/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Arabidopsis/growth & development , Base Sequence , Down-Regulation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Germ Cells, Plant/growth & development , Germ Cells, Plant/metabolism , Germ Cells, Plant/ultrastructure , Microscopy, Electron, Transmission , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development , Sequence Homology, Nucleic Acid
...