Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Nutr Biochem ; : 109659, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38685284

OBJECTIVE: Prediabetes is a crucial stage for prevention and treatment of diabetes, and vitamin D (VD) has been found to be linked to the development of prediabetes and diabetes. Thus, we aimed to identify the effect of VD supplementation on glucose metabolism in prediabetic participants and mice. DESIGN AND METHODS: A 1:1 paired design of randomized, placebo-controlled trial with 1600 IU/day VD3 or placebo was administered to individuals with prediabetes, two-way repeated-measures ANCOVA was used to analyze glycolipid and inflammatory factors. A high-fat diet induced prediabetic KKay mice were utilized to evaluate the effects of VD3 with 16 weeks supplementation. Generalized estimation equation, one way ANOVA were used to analyze continuous monitoring indexes and terminal indexes, respectively. Exercise capacity, skeletal muscle pathological features and relevant proteins were examined. RESULTS: The clinical results showed that VD3 could improve insulin secretion and decrease inflammation. Results of KKay mice exhibited that VD3 not only ameliorate glycolipid metabolism and inflammatory indicators, but also regulated pathological changes of skeletal muscle and exercise capacity. Mechanistically, our results demonstrated that VD3 could inhibit the TLR4/NFκB and activate PI3K/AKT signaling pathway. CONCLUSION: Collectively, the study indicated that VD3 exerts its beneficial effects by inhibiting TLR4/NFκB to decrease inflammatory response, and activating PI3K/AKT signaling pathway to regulate glucose homeostasis.

2.
Apoptosis ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558206

Diabetic nephropathy (DN) is a serious public health problem worldwide, and ferroptosis is deeply involved in the pathogenesis of DN. Prediabetes is a critical period in the prevention and control of diabetes and its complications, in which kidney injury occurs. This study aimed to explore whether ferroptosis would induce kidney injury in prediabetic mice, and whether vitamin D (VD) supplementation is capable of preventing kidney injury by inhibiting ferroptosis, while discussing the potential mechanisms. High-fat diet (HFD) fed KKAy mice and high glucose (HG) treated HK-2 cells were used as experimental subjects in the current study. Our results revealed that serious injury and ferroptosis take place in the kidney tissue of prediabetic mice; furthermore, VD intervention significantly improved the kidney structure and function in prediabetic mice and inhibited ferroptosis, showing ameliorated iron deposition, enhanced antioxidant capability, reduced reactive oxygen species (ROS) and lipid peroxidation accumulation. Meanwhile, VD up-regulated Klotho, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, and down-regulated p53, transferrin receptor 1 (TFR1) and Acyl-Coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Moreover, we demonstrated that HG-induced ferroptosis is antagonized by treatment of VD and knockdown of Klotho attenuates the protective effect of VD on ferroptosis in vitro. In conclusion, ferroptosis occurs in the kidney of prediabetic mice and VD owns a protective effect on prediabetic kidney injury, possibly by via the Klotho/p53 pathway, thus inhibiting hyperglycemia-induced ferroptosis.

3.
Eur J Nutr ; 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38366270

PURPOSE: The aim of this study was to evaluate the effects of vitamin D and/or calcium supplementation on sleep quality in individuals with prediabetes. METHODS: A 24-week randomized controlled trial (RCT) was conducted in a 212 Chinese population with prediabetes. Participants were randomly assigned to four groups: vitamin D + calcium group (1600 IU/day + 500 mg/day, n = 53), vitamin D group (1600 IU/day, n = 54), calcium group (500 mg/day, n = 51), and control group (placebo, n = 54). The Pittsburgh Sleep Quality Index (PSQI) was used as the primary outcome to assess sleep quality. Questionnaires and fasting blood samples were collected at baseline and post-intervention for demographic assessment and correlation index analysis. RESULTS: After a 24-week intervention, a significant difference was observed in serum 25(OH)D concentration among the four groups (P < 0.05), and the total PSQI score in vitamin D + calcium group was lower compared to the preintervention levels. Subgroup analyses revealed improved sleep quality with calcium supplementation (P < 0.05) for specific groups, including women, individuals with a low baseline 25(OH)D level (< 30 ng/mL), and individuals in menopause. Moreover, correlation analysis revealed a negative correlation between the extent of change in sleep efficiency scores before and after the calcium intervention and the degree of change in insulin efficiency scores (r = - 0.264, P = 0.007), as well as the magnitude of change in islet beta cell function (r = - 0.304, P = 0.002). CONCLUSIONS: The combined intervention of vitamin D and calcium, as well as calcium interventions alone, exhibits substantial potential for improving sleep quality in individuals with prediabetes. CLINICAL TRIAL REGISTRATION: The trial was registered in August 2019 as ChiCTR190002487.

4.
Cell Rep ; 41(2): 111454, 2022 10 11.
Article En | MEDLINE | ID: mdl-36223738

Estrogen receptor ß (ERß) and NOD-like receptor family pyrin domain containing 6 (NLRP6) are highly expressed in intestinal tissues. Loss of ERß and NLRP6 exacerbate colitis in mouse models; however, the underlying mechanisms are incompletely understood. Here, we report that ERß directly activates the NLRP6 gene expression via binding to estrogen responsive element of Nlrp6 gene promoter. ERß also physically interacts with the NLRP6 nucleotide-binding domain and promotes NLRP6 inflammasome assembly. The ERß-NLRP6 axis then interacts with multiple autophagy-related proteins, including ULK1, BECN1, ATG16L1, LC3B, and p62, and affects the autophagosome biogenesis and autophagic flux. Finally, NLRP6-mediated autophagy suppresses the inflammatory response by promoting the K48-linked polyubiquitination of ASC, Casp-1 p20, IL-1ß, TNF-α, and prohibitin-2. Thus, ERß-NLRP6 direct an anti-inflammatory response by promoting autophagy. Our work uncovers an ERß-NLRP6-autophagy pathway as a regulatory mechanism that maintains intestinal epithelial cell homeostasis and facilitates tissue repair in colitis.


Colitis , Estrogen Receptor beta , Receptors, Cell Surface , Animals , Anti-Inflammatory Agents , Autophagy/genetics , Colitis/genetics , Estrogen Receptor beta/genetics , Estrogens , Inflammasomes/metabolism , Mice , NLR Proteins , Nucleotides , Receptors, Cell Surface/genetics , Tumor Necrosis Factor-alpha
5.
Chem Biol Interact ; 347: 109616, 2021 Sep 25.
Article En | MEDLINE | ID: mdl-34363818

The reproductive toxicity of endocrine-disrupting chemicals has become a matter of great concern. However, the potential toxicological mechanism of typical environmental estrogens, bisphenol A (BPA) and genistein (GEN), on adult ovary remains ambiguous. In this study, we used laying hens as the experimental model and aimed to clarify the effect of long-term exposure to safe reference doses of BPA and GEN on adult ovary. Results demonstrated that 1/10 no-observable-adverse effect-level dose (1/10 NOAEL, 500 µg/kg body weight [bw]/day) of BPA significantly reduced the production performance and caused the degeneration of follicles and stromal cells and the increase of atretic follicles. Moreover, 1/10 NOAEL dose of BPA undermined the redox homeostasis of the ovary through activating Keap1 and suppressing the Nrf2-signaling pathway (Nrf2, NQO1, and HO-1). On the contrary, GEN (20, 40 mg/kg bw/day) dramatically improved the antioxidant capacity of the ovary by regulating the Nrf2-Keap1 pathway, enhancing the activities of antioxidant-related enzymes (CAT, GSH-Px, and T-SOD), and inhibiting the excessive accumulation of lipid peroxidation products (MDA). Parallel in vitro studies confirmed that the differential role of BPA and GEN on ovarian redox balance was directly mediated by Nrf2-Keap1 antioxidant system. And GEN could ameliorate BPA-induced oxidative stress. Importantly, our research found that exposure to BPA and GEN altered estrogen receptor alpha (ERα) expression in the ovary. And the use of specific ERα agonist/antagonist confirmed that BPA and GEN have opposite regulatory effects on the Nrf2-Keap1 pathway by targeting ERα.


Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Genistein/toxicity , Ovary/drug effects , Oxidative Stress/drug effects , Phenols/toxicity , Signal Transduction/drug effects , Animals , Chickens , Estrogen Receptor alpha/metabolism , Female , Homeostasis/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Ovary/metabolism , Ovary/pathology
6.
Environ Pollut ; 288: 117795, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34274649

Bisphenol A (BPA) and genistein (GEN) are selective estrogen receptor modulators, which are involved in the occurrence and development of metabolic syndrome. However, their roles in non-alcoholic fatty liver disease (NAFLD) of laying hens have not been reported. Here, we investigated the effects of different concentrations of GEN and BPA on the NAFLD of laying hens. Results showed that GEN ameliorated the high-energy and low-protein diet (HELP)-induced NAFLD by improving pathological damage, hepatic steatosis, and insulin resistance and blocking the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-related factors. By contrast, high dose of BPA could aggravate these changes with serious symptom of NAFLD and suppress the level of ERα in the liver considerably, while GEN could reverse this phenomenon in a dose-dependent manner. In general, our research shows that the protective effect of GEN on NAFLD aims to improve the metabolic disorders and inflammation closely connected to ERα, while BPA can inhibit the expression of ERα and exacerbate the symptom of NAFLD. In conclusion, we elucidate the opposing effects of GEN and BPA in NAFLD of laying hens, thus providing a potential mechanism related to ERα and inflammation.


Non-alcoholic Fatty Liver Disease , Animals , Benzhydryl Compounds/toxicity , Chickens , Female , Genistein/toxicity , Liver , Non-alcoholic Fatty Liver Disease/chemically induced , Phenols
7.
Ecotoxicol Environ Saf ; 206: 111398, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-33010594

Bisphenol A (BPA) is an endocrine-disrupting chemical. Its influence on lipid homeostasis remains to be proven. In this study, the obese model of laying hens were induced using high-fat diet (HFD) to determine the lipid metabolism interference of BPA, especially its influence on estrogen receptors (ERs) and oxidative damage, at the dose of tolerable daily intake (TDI, 50 µg/kg body weight [BW]/day) and no observable adverse effect level (NOAEL, 5000 µg/kg BW/day). The results demonstrated that the TDI dose of BPA interacted with ERα more effectively than the NOAEL dose of BPA. The TDI dose of BPA increased the expression of ERα (esr1), which further changed the expression of lipid metabolism-related genes, such as cpt-1, lpl, creb1, and apov1. Furthermore, the abdominal fat rate, hematoxylin-eosin staining of adipocytes, and the average area of the hens were reduced. Therefore, the TDI dose of BPA played an estrogen-compensating role and weakened the effect of HFD on obesity in aged hens. By contrast, BPA at NOAEL dose exhibited great oxidative stress, which remarkably inhibited the activities of antioxidant-related enzymes (total superoxide dismutase and glutathione peroxidase) and promoted the excessive accumulation of lipid peroxidation products (malondialdehyde). Moreover, the increase in oxidative stress corresponded well with the increase in the expression of fat-forming genes (srebp-1, fas, acc, and ppar γ). That is, BPA at NOAEL may accelerate the process of fat formation.


Abdominal Fat/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Lipid Metabolism/drug effects , Obesity/chemically induced , Phenols/toxicity , Abdominal Fat/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Antioxidants/metabolism , Body Weight/drug effects , Chickens/metabolism , Diet, High-Fat , Estrogen Receptor alpha/genetics , Female , Lipid Metabolism/genetics , Male , Obesity/genetics , Obesity/metabolism
8.
J Nutr Biochem ; 83: 108438, 2020 09.
Article En | MEDLINE | ID: mdl-32563803

Soy isoflavones (SIFs) are selective estrogen receptor modulators (SERMs) that have anti-inflammatory activities. Our previous study found that estrogen receptor α (ERα) directly regulates the NLRP3 transcription and NLRP3 inflammasome assembly. Therefore, we hypothesized that SIFs alleviate colitis via an ERα-dependent mechanism by targeting the NLRP3 inflammasome. The influence of SIFs on colitis and the potential mechanisms were thoroughly determined in this study. The results suggested that SIFs ameliorated dextran sodium sulfate (DSS)-induced body weight loss, reduced disease activity index and promoted the recovery of colon pathological damage in mice. Moreover, expression of the NLRP3 inflammasome was significantly inhibited, and the release of IL-1ß and IL-18 was suppressed by SIFs. Furthermore, ERα blockade ameliorated DSS-induced inflammatory responses in the intestine, and SIFs markedly suppressed the expression of ERα in a dose-dependent manner. Our study demonstrated that the protective therapeutic action of SIFs on DSS-induced colitis depended on inhibition of ERα and subsequent NLRP3 inflammasome activation, and SIFs are promising therapeutic agents for the treatment of colitis.


Anti-Inflammatory Agents/administration & dosage , Colitis/drug therapy , Estrogen Receptor alpha/immunology , Inflammasomes/drug effects , Isoflavones/administration & dosage , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Plant Extracts/administration & dosage , Animals , Colitis/genetics , Colitis/immunology , Estrogen Receptor alpha/genetics , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Glycine max/chemistry
9.
Food Chem Toxicol ; 131: 110527, 2019 Sep.
Article En | MEDLINE | ID: mdl-31173817

Zearalenone (ZEA) can widely contaminate crops and agricultural products. The ingestion of ZEA-contaminated food or feed affects the integrity and functions of the intestines. In this study, we aimed to find the potential protective mechanism against ZEA ingestion. We found that ZEA induced cell death in IPEC-J2 cells. Meanwhile, the cytoprotective autophagy was activated in ZEA-treated cells. Further studies demonstrated that a p38/MAPK inhibitor down-regulated autophagy and increased cell death compared to those of the controls. Furthermore, ZEA could induce the accumulation of ROS, and eliminating ROS with NAC resulted in a decline in cell death, p38/MAPK phosphorylation, and the expression of LC3-II compared to those of ZEA-group. In addition, cytochrome P450 reductase (CYPOR) was significantly increased in ZEA-treated cells compared to that in the controls, and an inhibitor of CYPOR decreased ROS levels and mitigated cell death compared to those of the ZEA-group. More importantly, we found that blocking both p38/MAPK signalling and autophagy could enhance CYPOR expression and elevate ROS levels. Overall, our study indicated that the p38/MAPK pathway could activate protective autophagy in response to the CYPOR-dependent oxidative stress that was induced by ZEA in IPEC-J2 cells.


Autophagy/drug effects , MAP Kinase Signaling System/drug effects , NADPH-Ferrihemoprotein Reductase/metabolism , Oxidative Stress/drug effects , Zearalenone/toxicity , Acetylcysteine/pharmacology , Animals , Epithelial Cells/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Intestines/drug effects , MAP Kinase Kinase 4/metabolism , Reactive Oxygen Species/metabolism , Swine , p38 Mitogen-Activated Protein Kinases/metabolism
...