Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 29(6): 066002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745984

RESUMEN

Significance: Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim: We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach: We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results: The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions: The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Retina , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Retina/diagnóstico por imagen , Humanos , Imagenología Tridimensional/métodos , Artefactos , Reproducibilidad de los Resultados , Relación Señal-Ruido
3.
APL Bioeng ; 7(4): 046112, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946874

RESUMEN

Fractional-pixel CO2 laser therapy shows promise for treating the genitourinary syndrome of menopause (GSM). Nevertheless, it remains controversial in the field of female pelvic medicine. This is due to the inherent difficulties in obtaining noninvasive biopsies to evaluate the treatment's efficacy and safety objectively. To address this challenge, we developed a noninvasive intravaginal optical coherence tomography (OCT)/OCT angiography (OCTA) endoscopic system, whose probe features a shape identical to the laser treatment probe. This system can provide high-resolution OCT images to identify the microstructure of vaginal tissue and visualize the vasculature network in vivo. We conducted clinical research on 25 post-menopausal patients with GSM. OCT/OCTA scans were acquired at four different locations of the vagina (distal anterior, distal posterior, proximal anterior, and proximal posterior) during the whole laser treatment session. A U-Net deep learning model was applied to segment the vaginal epithelium for assessing vaginal epithelial thickness (VET). Blood vessel density and VET were quantified to monitor the efficacy of fractional-pixel CO2 laser therapy. Statistical correlation analyses between these metrics and other clinical scores were conducted, validating the utility of our system. This OCT/OCTA endoscopic system has great potential to serve as a noninvasive biopsy tool in gynecological studies to screen, evaluate, and guide laser treatment for GSM.

4.
Invest Ophthalmol Vis Sci ; 64(14): 6, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930688

RESUMEN

Purpose: The purpose of this study was to demonstrate the utility of polarization-diversity optical coherence tomography (PD-OCT), a noninvasive imaging technique with melanin-specific contrast, in the quantitative and qualitative assessment of choroidal nevi. Methods: Nevi were imaged with a custom-built 55-degree field-of-view (FOV) 400 kHz PD-OCT system. Imaging features on PD-OCT were compared to those on fundus photography, auto-fluorescence, ultrasound, and non-PD-OCT images. Lesions were manually segmented for size measurement and metrics for objective assessment of melanin distributions were calculated, including degree of polarization uniformity (DOPU), attenuation coefficient, and melanin occupancy rate (MOR). Results: We imaged 17 patients (mean age = 69.5 years, range = 37-90) with 11 pigmented, 3 non-pigmented, and 3 mixed pigmentation nevi. Nevi with full margin acquisition had an average longest basal diameter of 5.1 mm (range = 2.99-8.72 mm) and average height of 0.72 mm (range = 0.37 mm-2.09 mm). PD-OCT provided clear contrast of choroidal melanin content, distribution, and delineation of nevus margins for melanotic nevi. Pigmented nevi were found to have lower DOPU, higher attenuation coefficient, and higher MOR than non-pigmented lesions. Melanin content on PD-OCT was consistent with pigmentation on fundus in 15 of 17 nevi (88%). Conclusions: PD-OCT allows objective assessment of choroidal nevi melanin content and distribution. In addition, melanin-specific contrast by PD-OCT enables clear nevus margin delineation and may improve serial growth surveillance. Further investigation is needed to determine the clinical significance and prognostic value of melanin characterization by PD-OCT in the evaluation of choroidal nevi.


Asunto(s)
Neoplasias de la Coroides , Nevo Pigmentado , Nevo , Neoplasias Cutáneas , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Tomografía de Coherencia Óptica , Melaninas , Nevo Pigmentado/diagnóstico por imagen , Nevo/diagnóstico por imagen , Neoplasias de la Coroides/diagnóstico por imagen
5.
Quant Imaging Med Surg ; 13(4): 2364-2375, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37064357

RESUMEN

Background: The coordination and the directional order of ciliary metachronal waves are the major factors that determine the effectiveness of mucociliary clearance (MCC). Even though metachronal waves play an essential part in immune response, clinical diagnostic tools and imaging techniques that can reliably and efficiently capture their spatial distribution and function are currently limited. Methods: We present label-free high-speed visualization of ciliary metachronal wave propagations in freshly-excised tracheal explants using a spectrally-encoded interferometric microscope over a two-dimensional (2D) plane of 0.5 mm × 0.5 mm at an acquisition rate of 50 frame-per-second. Furthermore, phase-resolved enhanced dynamic (PHRED) analysis of time-series doppler images was performed, where spatial-temporal characteristics of cilia metachronal wave motions are revealed through frequency component analysis and spatial filtering. Results: The PHRED analysis of phase-resolved Doppler (PRD) images offers a capability to distinguish the propagation direction of metachronal waves, and quantitatively assess amplitude and dominant frequency of cilia beating at each spatial location. Compared to the raw PRD images, the phase-resolved dynamic wavefront imaging (PRDWI) method showed the direction and coordination of collective cilia movement more distinctively. Conclusions: The PRDWI technique can have broad application prospects for the diagnosis of human respiratory diseases and evaluation of the curative effect of treatments and open new perspectives in biomedical sciences.

6.
Foods ; 11(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36230140

RESUMEN

The addition of fruit juice may improve the physicochemical and functional characteristics of dairy products. The study evaluated the effect of 1−6% (v/v) blue honeysuckle juice (BHJ) on the physicochemical, sensory and antioxidant characteristics of fermented goat milk (FGM) during 21 days of refrigerated storage and in vitro gastrointestinal digestion. The incorporation of BHJ significantly increased (p < 0.05) the water-holding capacity, viscosity, redness (a*) value, total phenolic content (TPC) and ferric ion-reducing antioxidant power during storage. Additionally, BHJ affected the microstructure and sensory score of the samples. FGM treated with 4% (v/v) BHJ exhibited the highest overall acceptability. The supplementation of BHJ diminished the goaty flavor and promoted in vitro protein digestion. Furthermore, the TPC was enhanced in addition to the antioxidant activity of FGM containing BHJ throughout the in vitro digestion. Therefore, FGM supplemented with BHJ serves as a novel and attractive goat dairy product.

7.
Opt Lett ; 47(19): 5096-5099, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181195

RESUMEN

A fast and practical computational cross-calibration of multiple spectrometers is described. A signal correlation matrix (CM) can be constructed from paired B-scans in a multiple-spectrometer optical coherence tomography (OCT), where the wavelength-corresponding pixels are indicated by high cross correlation. The CM can be used to either guide the physical alignment of spectrometers or to numerically match the spectra in the post-process. The performance is comparable to the previously reported optimization approach, as demonstrated by the mirror tests, qualitative comparison of OCT and optical coherence tomography angiography (OCTA) images, and quantitative comparison of image metrics.


Asunto(s)
Angiografía , Tomografía de Coherencia Óptica , Calibración , Angiografía con Fluoresceína/métodos , Refractometría , Tomografía de Coherencia Óptica/métodos
8.
J Biophotonics ; 15(11): e202200052, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35860856

RESUMEN

Genitourinary syndrome of menopause (GSM) negatively affects more than half of postmenopausal women. Energy-based therapy has been explored as a minimally invasive treatment for GSM; however, its mechanism of action and efficacy is controversial. Here, we report on a pilot imaging study conducted on a small group of menopause patients undergoing laser treatment. Intravaginal optical coherence tomography (OCT) endoscope was used to quantitatively monitor the changes in the vaginal epithelial thickness (VET) during fractional-pixel CO2 laser treatment. Eleven patients with natural menopause and one surgically induced menopause patient were recruited in this clinical study. Following the laser treatment, 6 out of 11 natural menopause patient showed increase in both proximal and distal VET, while two natural menopause patient showed increase in VET in only one side of vaginal tract. Furthermore, the patient group that showed increased VET had thinner baseline VET compared to the patients that showed decrease in VET after laser treatment. These results demonstrate the potential utility of intravaginal OCT endoscope in evaluating the vaginal tissue integrity and tailoring vaginal laser treatment on a per-person basis, with the potential to monitor other treatment procedures.


Asunto(s)
Terapia por Láser , Láseres de Gas , Humanos , Femenino , Proyectos Piloto , Dióxido de Carbono , Tomografía de Coherencia Óptica , Síndrome , Láseres de Gas/uso terapéutico , Vagina/diagnóstico por imagen , Vagina/cirugía , Terapia por Láser/métodos , Resultado del Tratamiento
9.
Light Sci Appl ; 11(1): 108, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35462570

RESUMEN

Multiple light scattering is considered as the major limitation for deep imaging and focusing in turbid media. In this paper, we present an innovative method to overcome this limitation and enhance the delivery of light energy ultra-deep into turbid media with significant improvement in focusing. Our method is based on a wide-field reflection matrix optical coherence tomography (RM-OCT). The time-reversal decomposition of the RM is calibrated with the Tikhonov regularization parameter in order to get more accurate reversal results deep inside the scattering sample. We propose a concept named model energy matrix, which provides a direct mapping of light energy distribution inside the scattering sample. To the best of our knowledge, it is the first time that a method to measure and quantify the distribution of beam intensity inside a scattering sample is demonstrated. By employing the inversion of RM to find the matched wavefront and shaping with a phase-only spatial light modulator, we succeeded in both focusing a beam deep (~9.6 times of scattering mean free path, SMFP) inside the sample and increasing the delivery of light energy by an order of magnitude at an ultra-deep (~14.4 SMFP) position. This technique provides a powerful tool to understand the propagation of photon in a scattering medium and opens a new way to focus light inside biological tissues.

10.
Biomed Opt Express ; 13(3): 1685-1701, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35414988

RESUMEN

The present paper introduces a numerical calibration method for the easy and practical implementation of multiple spectrometer-based spectral-domain optical coherence tomography (SD-OCT) systems. To address the limitations of the traditional hardware-based spectrometer alignment across more than one spectrometer, we applied a numerical spectral calibration algorithm where the pixels corresponding to the same wavelength in each unit are identified through spatial- and frequency-domain interferometric signatures of a mirror sample. The utility of dual spectrometer-based SD-OCT imaging is demonstrated through in vivo retinal imaging at two different operation modes with high-speed and dual balanced acquisitions, respectively, in which the spectral alignment is critical to achieve improved retinal image data without any artifacts caused by misalignment of the spectrometers.

11.
J Sci Food Agric ; 102(9): 3752-3761, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34913174

RESUMEN

BACKGROUND: Soybean oil bodies (SOB) are naturally pre-emulsified lipid droplets recovered directly from soybean seeds. Almost all food emulsions contain salts. However, it was not clear how the incorporation of salts affected the physicochemical stability of SOB. RESULTS: This study investigated the effect of NaCl (0-1.2%) on the physical and oxidative stability of SOB emulsions under neutral (pH 7) and acidic (pH 3) conditions. In the presence of NaCl, the SOB emulsion (pH 7) showed strong flocculation during storage due to electrostatic screening. The NaCl-induced flocculation of SOB was attenuated at pH 3, which may be due to the difference in conformation or interaction of the protein interfaces covering SOB at different pH values. The increase in ionic strength or acid conditioning treatment resulted in a remarkable increase in the stability of SOB emulsions against coalescence. The confocal laser scanning microscopy images also confirmed the NaCl-induced changes in the flocculation/coalescence properties of SOB. The oxidative behavior tests indicated that SOB emulsions containing NaCl were more susceptible to lipid oxidation but protein oxidation was inhibited due to electrostatic screening, which reduced pro-oxidant accessibility of unadsorbed proteins in the emulsion. This oxidative behavior was attenuated at pH 3. CONCLUSION: The incorporation of NaCl significantly reduced the physical and oxidative stability of the SOB emulsion, and acidic pH mitigated NaCl-induced flocculation and lipid oxidation of SOB. © 2021 Society of Chemical Industry.


Asunto(s)
Cloruro de Sodio , Aceite de Soja , Emulsiones/química , Floculación , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Proteínas/química , Sales (Química) , Cloruro de Sodio/química , Agua/química
12.
Opt Lett ; 46(16): 3833-3836, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388753

RESUMEN

Megahertz-rate optical coherence tomography angiography (OCTA) is highly anticipated as an ultrafast imaging tool in clinical settings. However, shot-noise-limited sensitivity is inevitably reduced in high-speed imaging systems. In this Letter, we present a coherent buffer averaging technique for use with a Fourier-domain mode-locked (FDML) laser to improve OCTA contrast at 1060 nm MHz-rate retinal imaging. Full characterization of spectral variations among the FDML buffers and a numerical correction method are also presented, with the results demonstrating a 10-fold increase in the phase alignment among buffers. Coherent buffer averaging provided better OCTA contrast than the conventional multi-frame averaging approach with a faster acquisition time.


Asunto(s)
Rayos Láser , Tomografía de Coherencia Óptica , Angiografía , Retina
13.
Sci Rep ; 11(1): 9670, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958605

RESUMEN

Numerous techniques have been demonstrated for effective generation of orbital angular momentum-carrying radiation, but intracavity generation of continuously tunable pulses in the femtosecond regime remains challenging. Even if such a creation was realized, the generated pulses-like all pulses in reality-are complex and transitory objects that can only be comprehensively characterized via multidimensional spaces. An integrated lasing system that generates pulses while simultaneously quantifies them can achieve adaptive pulse tailoring. Here, we report a femtosecond pulse scope that unifies vector vortex mode-locked lasing and vectorial quantification. With intracavity-controlled Pancharatnam-Berry phase modulation, continuous and ergodic generation of spirally polarized states along a broadband higher-order Poincaré sphere was realized. By intrinsically coupling a two-dimensional polarization-sensitive time-scanning interferometer to the laser, multidimensional spatiotemporal features of the pulse were further visualized. The proposed methodology paves the way for design optimization of ultrafast optics by integrating complex femtosecond pulse generation and structural customization, facilitating its applications in optical physics research and laser-based manufacturing.

14.
Biomed Opt Express ; 12(4): 2508-2518, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33996244

RESUMEN

Recent advancements in the high-speed long-range optical coherence tomography (OCT) endoscopy allow characterization of tissue compliance in the upper airway, an indicator of collapsibility. However, the resolution and accuracy of localized tissue compliance measurement are currently limited by the lack of a reliable nonuniform rotational distortion (NURD) correction method. In this study, we developed a robust 2-step NURD correction algorithm that can be applied to the dynamic OCT images obtained during the compliance measurement. We demonstrated the utility of the NURD correction algorithm by characterizing the local compliance of nasopharynx from an awake human subject for the first time.

15.
Opt Lett ; 45(4): 828-831, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058481

RESUMEN

Multiple light scattering in biomedical tissue limits the penetration depth of optical imaging systems such as optical coherence tomography. To increase the imaging depth in scattering media, a computational method based on coherent reflection matrix measurement has been developed using low coherence interferometry. The complex reflection matrix is obtained via point-by-point scanning followed by a phase-shifting method; then singular value decomposition is used to retrieve the singly back-scattered light. However, the in vivo application of the current reported method is limited due to the slow acquisition speed of the matrix. In this Letter, a wide-field heterodyne-detection method is adopted to speed up the complex matrix measurement at a deep tissue layer. Compared to the phase-shifting method, the heterodyne-detection scheme retrieves depth-resolved complex amplitudes faster and is more stable without mechanical movement of the reference mirror. As a result, the matrix measurement speed is increased by more than one order of magnitude.


Asunto(s)
Tomografía de Coherencia Óptica/métodos , Procesamiento de Imagen Asistido por Computador , Interferometría , Fenómenos Ópticos , Relación Señal-Ruido , Tomografía de Coherencia Óptica/instrumentación
16.
Female Pelvic Med Reconstr Surg ; 26(2): 155-158, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31990806

RESUMEN

OBJECTIVE: Optical coherence tomography is a noninvasive technology that visualizes tissue microstructure with high spatial resolution. We designed a novel vaginal system that demonstrates a clear distinction between vaginal tissues planes. In this study, we sought to compare vaginal tomographic images of premenopausal, perimenopausal, and postmenopausal women, demonstrate feasibility of tracking vaginal tissue changes after treatment with fractional-pixel CO2 laser therapy, and obtain a histologic correlation of these findings. METHODS: Enrolled subjects underwent imaging and were divided into 3 groups based on menopausal status. Women with genitourinary syndrome of menopause who received fractional-pixel CO2 laser therapy were assessed before and after treatment. A cadaveric vagina was used to obtain tomographic and histologic images to assess for accuracy. Our primary outcome was mean vaginal epithelial thickness. Statistical analysis was performed using analysis of variance and t tests, respectively. RESULTS: Among 6 women, the mean vaginal epithelial thickness decreased with menopause (P < 0.01). Although change in epithelial thickness after fractional-pixel CO2 laser treatment varied between the 2 subjects evaluated, it increased significantly for the subject who reported improvement of vaginal symptoms (P < 0.01). Using a cadaveric specimen, optical biopsy was correlated to an hematoxylin and eosin-stained biopsy of the same vaginal site. CONCLUSIONS: This study establishes feasibility of optical coherence tomography in providing an optical biopsy of the vaginal epithelium and lamina propria. In addition, it demonstrates vaginal changes as women enter menopause. This report is the initial phase of a longitudinal cohort study to evaluate changes in vaginal microstructure after energy-based treatment.


Asunto(s)
Biopsia Guiada por Imagen/métodos , Terapia por Luz de Baja Intensidad/métodos , Tomografía de Coherencia Óptica/métodos , Vagina , Enfermedades Vaginales , Adulto , Anciano , Estudios de Factibilidad , Femenino , Humanos , Láseres de Gas/uso terapéutico , Estudios Longitudinales , Persona de Mediana Edad , Perimenopausia/fisiología , Posmenopausia/fisiología , Premenopausia/fisiología , Resultado del Tratamiento , Vagina/diagnóstico por imagen , Vagina/patología , Enfermedades Vaginales/etiología , Enfermedades Vaginales/patología , Enfermedades Vaginales/fisiopatología , Enfermedades Vaginales/terapia
17.
Artículo en Inglés | MEDLINE | ID: mdl-31497378

RESUMEN

Diagnosis of inhalation injury has been clinically challenging. Currently, assessment of inhalation injury relies on subjective clinical exams and bronchoscopy, which provides little understanding of tissue conditions and results in limited prognostics. Endoscopic Optical coherence tomography (OCT) technology has been recently utilized in the airway for direct assessment of respiratory tract disorders and injuries. Endoscopic OCT is capable of capturing high-resolution images of tissue morphology 1-3 mm beneath the surface as well as the complex 3D anatomical shape. Previous studies indicate that changes in airway histopathology can be found in the OCT image almost immediately after inhalation of smoke and other toxic chemicals, which correlates well with histology and pulmonary function tests. This review summarizes the recent development of endoscopic OCT technology for airway imaging, current uses of OCT for inhalation injury, and possible future directions.

18.
Opt Lett ; 44(12): 3150-3153, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199403

RESUMEN

We present a very simple method of constructing a polarization-sensitive optical coherence tomography (PS-OCT) system. An ordinary fiber-based swept-source OCT system was reconfigured for PS-OCT by adding a long section of polarization-maintaining fiber in the sample arm. Two polarization modes of a large group-delay difference formed spatially distinguished polarization channels. The depth-encoded information on the polarization states was retrieved by an amplitude-based analysis. We found that our method provides an economic scheme of PS-OCT. It demonstrates that an ordinary OCT system can be easily reconfigured for PS-OCT imaging if it has sufficient margins in the imaging range.

19.
J Trauma Acute Care Surg ; 87(1S Suppl 1): S132-S137, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31246917

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury with a mortality rate of up to 40%. Early management of ARDS has been difficult due to the lack of sensitive imaging tools and robust analysis software. We previously designed an optical coherence tomography (OCT) system to evaluate mucosa thickness (MT) after smoke inhalation, but the analysis relied on manual segmentation. The aim of this study is to assess in vivo proximal airway volume (PAV) after inhalation injury using automated OCT segmentation and correlate the PAV to lung function for rapid indication of ARDS. METHODS: Anesthetized female Yorkshire pigs (n = 14) received smoke inhalation injury (SII) and 40% total body surface area thermal burns. Measurements of PaO2-to-FiO2 ratio (PFR), peak inspiratory pressure (PIP), dynamic compliance, airway resistance, and OCT bronchoscopy were performed at baseline, postinjury, 24 hours, 48 hours, 72 hours after injury. A tissue segmentation algorithm based on graph theory was used to reconstruct a three-dimensional (3D) model of lower respiratory tract and estimate PAV. Proximal airway volume was correlated with PFR, PIP, compliance, resistance, and MT measurement using a linear regression model. RESULTS: Proximal airway volume decreased after the SII: the group mean of proximal airway volume at baseline, postinjury, 24 hours, 48 hours, 72 hours were 20.86 cm (±1.39 cm), 17.61 cm (±0.99 cm), 14.83 cm (±1.20 cm), 14.88 cm (±1.21 cm), and 13.11 cm (±1.59 cm), respectively. The decrease in the PAV was more prominent in the animals that developed ARDS after 24 hours after the injury. PAV was significantly correlated with PIP (r = 0.48, p < 0.001), compliance (r = 0.55, p < 0.001), resistance (r = 0.35, p < 0.01), MT (r = 0.60, p < 0.001), and PFR (r = 0.34, p < 0.01). CONCLUSION: Optical coherence tomography is a useful tool to quantify changes in MT and PAV after SII and burns, which can be used as predictors of developing ARDS at an early stage. LEVEL OF EVIDENCE: Prognostic, level III.


Asunto(s)
Lesión Pulmonar/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Lesión por Inhalación de Humo/diagnóstico por imagen , Tomografía de Coherencia Óptica , Animales , Broncoscopía , Femenino , Lesión Pulmonar/complicaciones , Síndrome de Dificultad Respiratoria/etiología , Lesión por Inhalación de Humo/complicaciones , Porcinos
20.
Quant Imaging Med Surg ; 9(3): 510-520, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31032197

RESUMEN

Tracking and monitoring implanted stem cells are essential to maximize benefits and to minimize the side effects of stem cell therapy for personalized or "precision" medicine. Previously, we proposed a comprehensive biological Global Positioning System (bGPS) to track and monitor stem cells in vivo. Magnetic resonance imaging (MRI), positron emission tomography (PET), bioluminescent imaging, fluorescence imaging, and single-photon emission computerized tomography (SPECT) have been utilized to track labeled or genetically-modified cells in vivo in rats and humans. A large amount of research has been dedicated to the design of reporter genes and molecular probes for imaging and the visualization of the biodistribution of the implanted cells in high resolution. On the other hand, optical-based functional imaging, such as photoacoustic imaging (PAI), optical coherence tomography (OCT), and multiphoton microscopy (MPM), has been implemented into small endoscopes to image cells inside the body. The optical fiber allows miniaturization of the imaging probe while maintaining high resolution due to light-based imaging. Upon summarizing the recent progress in the design and application of functional endoscopy techniques for stem cell monitoring, we offer perspectives for the future development of endoscopic molecular imaging tools for in vivo tracking of spatiotemporal changes in subclonal evolution at the single cell level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...