Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Biobehav Rev ; 132: 648-663, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890602

RESUMEN

Estrogens are the hormones of reproduction in women as well as of many other important functions in the male and female body. They undergo significant changes in the different phases of life, e.g. during puberty, pregnancy or at menopause/andropause. Phytoestrogens are natural non-steroidal phenolic plant compounds that can mimic the activity of estrogens and their beneficial effects in women and in men. This narrative review summarizes the literature on the physiological role of estrogens and the several potential health benefits of phytoestrogens, with particular attention given to the possible role of phytoestrogens in aging.


Asunto(s)
Estrógenos no Esteroides , Isoflavonas , Estrógenos/farmacología , Femenino , Humanos , Masculino , Fitoestrógenos/farmacología , Preparaciones de Plantas
2.
Cancers (Basel) ; 13(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199435

RESUMEN

Adjuvant treatment for patients with early stage colorectal cancer (eCRC) is currently based on suboptimal risk stratification, especially for elderly patients. Metabolomics may improve the identification of patients with residual micrometastases after surgery. In this retrospective study, we hypothesized that metabolomic fingerprinting could improve risk stratification in patients with eCRC. Serum samples obtained after surgery from 94 elderly patients with eCRC (65 relapse free and 29 relapsed, after 5-years median follow up), and from 75 elderly patients with metastatic colorectal cancer (mCRC) obtained before a new line of chemotherapy, were retrospectively analyzed via proton nuclear magnetic resonance spectroscopy. The prognostic role of metabolomics in patients with eCRC was assessed using Kaplan-Meier curves. PCA-CA-kNN could discriminate the metabolomic fingerprint of patients with relapse-free eCRC and mCRC (70.0% accuracy using NOESY spectra). This model was used to classify the samples of patients with relapsed eCRC: 69% of eCRC patients with relapse were predicted as metastatic. The metabolomic classification was strongly associated with prognosis (p-value 0.0005, HR 3.64), independently of tumor stage. In conclusion, metabolomics could be an innovative tool to refine risk stratification in elderly patients with eCRC. Based on these results, a prospective trial aimed at improving risk stratification by metabolomic fingerprinting (LIBIMET) is ongoing.

3.
Appl Microbiol Biotechnol ; 105(7): 2951-2965, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33687502

RESUMEN

Echinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms. Electron and confocal microscopy observations showed that three different components of microorganisms were associated to cypselas of E. purpurea: (i) one endocellular bacterial component in the cotyledons, enclosed within the host membrane; (ii) another more generic bacterial component adhering to the external side of the perianth; and (iii) a fungal component inside the porous layer of the perianth, the woody and porous modified residual of the flower, in the form of numerous hyphae able to cross the wall between adjacent cells. Isolated bacteria were affiliated to the genera Paenibacillus, Pantoea, and Sanguibacter. Plate tests showed a general resistance to six different antibiotics and also to an antimicrobial-producing Rheinheimera sp. test strain. Finally, microbiome-deprived E. purpurea seeds showed a reduced ability to germinate, suggesting an active role of the microbiome in the plant vitality. Our results suggest that the endophytic bacterial community of E. purpurea, previously found in roots and stem/leaves, might be already carried at the seed stage, hosted by the cotyledons. A further microbial fungal component is transported together with the seed in the perianth of the cypsela, whose remarkable structure may be considered as an adaptation for fungal transportation, and could influence the capability of the seed to germinate in the soil.Key Points• The fruit of Echinacea purpurea contains fungi not causing any damage to the plant.• The seed cotyledons contain endocellular bacteria.• Seed/fruit deprived of the microbiome showed a reduced ability to germinate.


Asunto(s)
Echinacea , Bacterias , Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Microbiología del Suelo
4.
Pathogens ; 10(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33498987

RESUMEN

Medicinal plants (MPs) have been used since antiquity in traditional and popular medicine, and they represent a very important source of bioactive molecules, including antibiotic, antiviral, and antifungal molecules. Such compounds are often of plant origin, but in some cases, an origin or a modification from plant microbiota has been shown. Actually, the research continues to report the production of bioactive molecules by plants, but the role of plant-endophytic interaction is emerging. Classic examples are mainly concerned with fungal endophytes; however, it has been recently shown that bacterial endophytes can also play an important role in influencing the plant metabolism related to the synthesis of bioactive compounds. In spite of this, a deep investigation on the power of MP bacterial endophytes is lacking. Here, an overview of the studies on MP bacterial microbiota and its role in the production of plant antimicrobial compounds contributing to prime host defense system and representing a huge resource for biotech and therapeutic applications is provided.

5.
Front Microbiol ; 11: 1652, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903322

RESUMEN

Improvement of industrial productions through more environment-friendly processes is a hot topic. In particular, land and marine environment pollution is a main concern, considering that recalcitrant compounds can be spread and persist for a long time. In this context, an efficient and cost-effective treatment of wastewater derived from industrial applications is crucial. Phytodepuration has been considered as a possible solution and it is based on the use of plants and their associated microorganisms to remove and/or transform pollutants. In this work we investigated the culturable microbiota of Phragmites australis roots, sampled from the constructed wetlands (CWs) pilot plant in the G.I.D.A. SpA wastewater treatment plant (WWTP) of Calice (Prato, Tuscany, Italy) before and after the CW activation in order to check how the influx of wastewater might affect the resident bacterial community. P. australis specimens were sampled and a panel of 294 culturable bacteria were isolated and characterized. This allowed to identify the dynamics of the microbiota composition triggered by the presence of wastewater. 27 out of 37 bacterial genera detected were exclusively associated to wastewater, and Pseudomonas was constantly the most represented genus. Moreover, isolates were assayed for their resistance against eight different antibiotics and synthetic wastewater (SWW). Data obtained revealed the presence of resistant phenotypes, including multi-drug resistant bacteria, and a general trend regarding the temporal evolution of resistance patterns: indeed, a direct correlation linking the appearance of antibiotic- and SWW-resistance with the time of exposure to wastewater was observed. In particular, nine isolates showed an interesting behavior since their growth was positively affected by the highest concentrations of SWW. Noteworthy, this study is among the few investigating the P. australis microbiota prior to the plant activation.

6.
Nat Prod Res ; 34(15): 2232-2237, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30908079

RESUMEN

The differences in volatile profile of Echinacea purpurea plants not-inoculated (EpC) and inoculated with their endophytes from roots (EpR) and stem/leaves (EpS/L) were analysed and compared by GC-FID/GC-MS in an in vitro model. Non-terpenes and sesquiterpene hydrocarbons were the most abundant classes with an opposite behaviour of EpS/L showing a decreased emission of sesquiterpenes and an increase of non-terpene derivatives. The main compounds obtained from EpS/L were (Z)-8-dodecen-1-ol and 1-pentadecene, while germacrene D and ß-caryophyllene were the key compounds in EpC and EpR. For the first time, this work indicates that bacterial endophytes modify the aroma profiles of infected and non-infected in vitro plants of the important medicinal plant E. purpurea. Therefore, our model of infection could permit to select endophytic strains to use as biotechnological tool in the production of medicinal plants enriched in volatile bioactive compounds.


Asunto(s)
Echinacea/química , Endófitos/patogenicidad , Plantas Medicinales/microbiología , Productos Biológicos , Echinacea/microbiología , Infecciones , Enfermedades de las Plantas , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología
7.
Water Sci Technol ; 79(1): 145-155, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30816871

RESUMEN

In this paper, the design and start-up of a constructed wetland (CW) for the tertiary treatment of landfill leachates is presented. The flux is characterized by high salinity, high concentration of nitrogen (almost completely in the form of nitrate) and a biochemical oxygen demand (BOD)/chemical oxygen demand (COD) ratio close to zero. The CW pilot plant suffered from mechanical and hydraulic malfunctions which led to an uneven growth of plants inside the tanks. Despite this, COD has been reduced in the range of 0-30%, reduced forms of N (ammonia and nitrite) are also oxidized and removed by 50-80% and 20-26% on average. Considering the low number of plants and the loading rate, CW pilot plant allowed to remove more than 16 kg of COD, leading to a specific removal of 10 gCOD/d · m2. Moreover, bacterial communities associated to plants were isolated and analyzed in order to evaluate the influence of such communities on phytoremediation. Bulk soil registered the lowest bacterial titers, while plant compartments and rhizospheric soil showed to be more suitable for bacterial colonization. Twenty-five different bacterial genera were observed among the analyzed isolates, with the predominance of Pseudomonas genus.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Humedales , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno , Contaminantes Químicos del Agua/análisis
8.
FEMS Microbiol Ecol ; 94(12)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30202963

RESUMEN

Epilithic river biofilms characterize the rock surfaces along the Acquarossa river (Viterbo, Italy); they are in part red and in part black colored, maintaining a well-defined borderline. This peculiarity has raised questions about the biotic and abiotic phenomena that might avoid the mixing of the two biofilms. In this study, the structuring of bacterial communities in black and red epilithic biofilm in the Acquarossa river has been investigated with both culture dependent and independent approaches. Data obtained highlighted a (very) different taxonomic composition of black and red epilithons bacterial communities, dominated by Acinetobacter sp. and iron-oxidizing bacteria, respectively. The chemical characterization of both river water and biofilms revealed a substantial heavy metals pollution of the environment; heavy metals were also differentially accumulated in red and black epilithons. Overall, our data revealed that the structuring of red and black epilithons might be affected mainly by the antagonistic interactions exhibited by bacterial genera dominating the two biofilms. These findings suggest that biotic factors might be responsible for the structuring of natural bacterial communities, suggesting that there is a selection of populations at very small scale, and that different populations might compete for different niches.


Asunto(s)
Acinetobacter/metabolismo , Biopelículas/crecimiento & desarrollo , Metales Pesados/análisis , Pseudomonas/metabolismo , Rhodophyta/microbiología , Contaminantes Químicos del Agua/análisis , Acinetobacter/clasificación , Biopelículas/clasificación , Hierro/química , Italia , Oxidación-Reducción , Pseudomonas/clasificación , Ríos/microbiología , Microbiología del Suelo
9.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29912319

RESUMEN

A key factor in the study of plant-microbes interactions is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analysing bacterial strains (isolated from three different compartments, i.e. rhizospheric soil, roots and stem/leaves) for phenotypic features such as antibiotic resistance, extracellular enzymatic activity, siderophore and indole 3-acetic acid production, as well as cross-antagonistic activities. Data obtained highlighted that bacteria from different plant compartments were characterized by specific antibiotic resistance phenotypes and antibiotic production, suggesting that the bacterial communities themselves could be responsible for structuring their own communities by the production of antimicrobial molecules selecting bacterial-adaptive phenotypes for plant tissue colonization.


Asunto(s)
Antibacterianos/metabolismo , Antibiosis/fisiología , Bacterias/crecimiento & desarrollo , Echinacea/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Tallos de la Planta/microbiología , Rizosfera , Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Microbiana , Ácidos Indolacéticos/metabolismo , Microbiota/efectos de los fármacos , Suelo , Microbiología del Suelo , Especificidad de la Especie
10.
Sci Rep ; 7(1): 16924, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208923

RESUMEN

The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.


Asunto(s)
Echinacea/fisiología , Endófitos/fisiología , Metabolismo Secundario , Carboxiliasas/genética , Echinacea/genética , Echinacea/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas/genética , Alcamidas Poliinsaturadas/metabolismo
11.
Genome Announc ; 5(25)2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642378

RESUMEN

We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules.

12.
Genome Announc ; 5(20)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522712

RESUMEN

In this announcement, we detail the draft genome sequence of the Pseudomonas sp. strain Ep R1, isolated from the roots of the medicinal plant Echinacea purpurea The elucidation of this genome sequence may allow the identification of genes associated with the production of antimicrobial compounds.

13.
Res Microbiol ; 168(3): 293-305, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27884784

RESUMEN

In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action.


Asunto(s)
Antibiosis , Echinacea/microbiología , Gammaproteobacteria/genética , Gammaproteobacteria/fisiología , Rizosfera , Acinetobacter baumannii/crecimiento & desarrollo , Antibacterianos/farmacología , Biotecnología , Burkholderia cepacia/crecimiento & desarrollo , Endófitos/aislamiento & purificación , Fosfomicina/farmacología , Gammaproteobacteria/química , Gammaproteobacteria/aislamiento & purificación , Genómica , Ácidos Indolacéticos/metabolismo , Klebsiella pneumoniae/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/microbiología , Plantas Medicinales/microbiología
15.
Genome Announc ; 4(4)2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27469957

RESUMEN

We report here the draft genome sequence of the Pseudomonas sp. TAA207 and Pseudomonas sp. TAD18 strains, isolated from Antarctic sediments during a summer campaign near coastal areas of Terra Nova Bay (Antarctica). Genome sequence knowledge allowed the identification of genes associated with the production of bioactive compounds and antibiotic resistance. Furthermore, it will be instrumental for comparative genomics and the fulfillment of both basic and application-oriented investigations.

16.
Genome Announc ; 4(3)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27198032

RESUMEN

We report here the draft genome sequence of the Flavobacterium sp. TAB 87 strain, isolated from Antarctic seawater during a summer campaign near the French Antarctic station Dumont d'Urville (60°40'S, 40°01'E). It will allow for comparative genomics and the fulfillment of both fundamental and application-oriented investigations. It allowed the recognition of genes associated with the production of bioactive compounds and antibiotic resistance.

17.
Genome Announc ; 4(3)2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27151804

RESUMEN

We announce here the draft genome sequence of Pseudomonas sp. strain EpS/L25, isolated from the stem/leaves of the medicinal plant Echinacea purpurea This genome will allow for comparative genomics in order to identify genes associated with the production of bioactive compounds and antibiotic resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...