Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 142(3): 1482, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28964081

RESUMEN

Automated and manual acoustic localizations of bowhead whale calls in the Beaufort Sea were used to estimate the minimum frequency attained by their highly variable FM-modulated call repertoire during seven westerly fall migrations. Analyses of 13 355 manual and 100 009 automated call localizations found that between 2008 and 2014 the proportion of calls that dipped below 75 Hz increased from 27% to 41%, shifting the mean value of the minimum frequency distribution from 94 to 84 Hz. Multivariate regression analyses using both generalized linear models and generalized estimating equations found that this frequency shift persisted even when accounting for ten other factors, including calling depth, call range, call type, noise level, signal-to-noise ratio, local water depth (site), airgun activity, and call spatial density. No single call type was responsible for the observed shift, but so-called "complex" calls experienced larger percentage downward shifts. By contrast, the call source level distribution remained stable over the same period. The observed frequency shift also could not be explained by migration corridor shifts, relative changes in call detectability between different frequency bands, long-term degradation in the automated airgun detector, physiological growth in the population, or behavioral responses to increasing population density (estimated via call density).


Asunto(s)
Acústica , Ballena de Groenlandia , Vocalización Animal , Animales , Modelos Biológicos , Océanos y Mares , Densidad de Población , Análisis de Regresión , Espectrografía del Sonido
2.
J Acoust Soc Am ; 140(6): 4288, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28040014

RESUMEN

Automated and manual acoustic localizations of migrating bowhead whales were used to estimate source level and calling depth distributions of their frequency-modulated-modulated calls over seven years between 2008 and 2014. Whale positions were initially triangulated using directional autonomous seafloor acoustic recorders, deployed between 25 and 55 m water depth near Kaktovik, Alaska, during the fall westward migration. Calling depths were estimated by minimizing the "discrepancy" between source level estimates from at least three recorders detecting the same call. Applying a detailed waveguide propagation model to the data yielded broadband source levels of 161 ± 9 dB re 1 µPa2 s at 1 m (SEL) for calls received between 20 and 170 Hz. Applying a simpler 15 log10(R) power-law propagation model yielded SEL source levels of 158 ± 10 dB. The most probable calling depths lay between 22 and 30 m: optimal depths for long-range acoustic signal transmission in this particular environment.

3.
J Acoust Soc Am ; 130(5): 3046-58, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22087932

RESUMEN

Shallow-water airgun survey activities off the North Slope of Alaska generate impulsive sounds that are the focus of much regulatory attention. Reverberation from repetitive airgun shots, however, can also increase background noise levels, which can decrease the detection range of nearby passive acoustic monitoring (PAM) systems. Typical acoustic metrics for impulsive signals provide no quantitative information about reverberation or its relative effect on the ambient acoustic environment. Here, two conservative metrics are defined for quantifying reverberation: a minimum level metric measures reverberation levels that exist between airgun pulse arrivals, while a reverberation metric estimates the relative magnitude of reverberation vs expected ambient levels in the hypothetical absence of airgun activity, using satellite-measured wind data. The metrics are applied to acoustic data measured by autonomous recorders in the Alaskan Beaufort Sea in 2008 and demonstrate how seismic surveys can increase the background noise over natural ambient levels by 30-45 dB within 1 km of the activity, by 10-25 dB within 15 km of the activity, and by a few dB at 128 km range. These results suggest that shallow-water reverberation would reduce the performance of nearby PAM systems when monitoring for marine mammals within a few kilometers of shallow-water seismic surveys.


Asunto(s)
Acústica , Monitoreo del Ambiente/métodos , Armas de Fuego , Geología/métodos , Ruido , Alaska , Océanos y Mares , Análisis de Regresión , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido , Factores de Tiempo , Vibración , Agua , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA