Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Eur J Med Chem ; 213: 113057, 2021 Mar 05.
Article En | MEDLINE | ID: mdl-33303237

The mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNKs 1/2) and their downstream target eIF4E, play a role in oncogenic transformation, progression and metastasis. These results provided rationale for development of first MNKs inhibitors, currently in clinical trials for cancer treatment. Inhibitors of the MNKs/eIF4E pathway are also proposed as treatment strategy for inflammatory conditions. Here we present results of optimization of indazole-pyridinone derived MNK1/2 inhibitors among which compounds 24 and 26, selective and metabolically stable derivatives. Both compounds decreased levels of eIF4E Ser206 phosphorylation (pSer209-eIF4E) in MOLM16 cell line. When administered in mice compounds 24 and 26 significantly improved survival rates of animals in the endotoxin lethal dose challenge model, with concomitant reduction of proinflammatory cytokine levels - TNFα and IL-6 in serum. Identified MNK1/2 inhibitors represent a novel class of immunomodulatory compounds with a potential for the treatment of inflammatory diseases including sepsis.


Immunologic Factors/chemical synthesis , Indazoles/chemistry , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridones/chemistry , Shock, Septic/drug therapy , Amino Acid Sequence , Animals , Cytokines/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Endotoxins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Humans , Immunologic Factors/pharmacology , Mice , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Shock, Septic/chemically induced , Signal Transduction , Structure-Activity Relationship
2.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Article En | MEDLINE | ID: mdl-31276659

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase-1/antagonists & inhibitors , Imidazoles/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans
3.
Arch Biochem Biophys ; 671: 1-7, 2019 08 15.
Article En | MEDLINE | ID: mdl-31108049

Maternal Embryonic Leucine Zipper Kinase (MELK) is overexpressed in various tumors which has been convincingly linked to tumor cell survival. As such, MELK became an interesting target for pharmacological intervention. In this study we present the crystal structure of MELK in complex with dorsomorphin, an inhibitor of VEGFR and AMPK. By defining the mechanistic details of ligand recognition we identify a key residue (Cys89) at the hinge region of MELK responsible for positioning of the ligand at the catalytic pocket. This conclusion is supported by kinetic characterization of Cys89 mutants which show decreased affinity towards both ATP and dorsomorphin. The detailed binding mode of dorsomorphin characterized in this study defines a minimal requirement for MELK ligands, a valuable information for future rational design of inhibitors based on entirely new scaffolds.


Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/metabolism , Pyrimidines/metabolism , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Humans , Molecular Structure , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry
4.
Sci Rep ; 9(1): 4376, 2019 03 13.
Article En | MEDLINE | ID: mdl-30867500

The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.


Adhesins, Bacterial/metabolism , Bacteria, Anaerobic/physiology , Biofilms , Candida albicans/physiology , Microbial Interactions , Porphyromonas gingivalis/physiology , Adhesins, Bacterial/genetics , Bacterial Adhesion , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Microbial Viability , Proteomics/methods , Virulence
...