Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Front Immunol ; 15: 1382911, 2024.
Article En | MEDLINE | ID: mdl-38807606

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , Immunity, Humoral , Immunoglobulin G , Memory B Cells , Plasma Cells , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Male , Adult , Cross Reactions/immunology , Female , Plasma Cells/immunology , Middle Aged , Immunoglobulin G/immunology , Immunoglobulin G/blood , Vaccination , Influenza Vaccines/immunology , Immunologic Memory/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Epitopes, B-Lymphocyte/immunology , B-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Kinetics
2.
J Biomed Sci ; 31(1): 26, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38408992

BACKGROUND: Streptococcus pyogenes (group A streptococcus, GAS) causes a variety of diseases ranging from mild superficial infections of the throat and skin to severe invasive infections, such as necrotizing soft tissue infections (NSTIs). Tissue passage of GAS often results in mutations within the genes encoding for control of virulence (Cov)R/S two component system leading to a hyper-virulent phenotype. Dendritic cells (DCs) are innate immune sentinels specialized in antigen uptake and subsequent T cell priming. This study aimed to analyze cytokine release by DCs and other cells of monocytic origin in response to wild-type and natural covR/S mutant infections. METHODS: Human primary monocyte-derived (mo)DCs were used. DC maturation and release of pro-inflammatory cytokines in response to infections with wild-type and covR/S mutants were assessed via flow cytometry. Global proteome changes were assessed via mass spectrometry. As a proof-of-principle, cytokine release by human primary monocytes and macrophages was determined. RESULTS: In vitro infections of moDCs and other monocytic cells with natural GAS covR/S mutants resulted in reduced secretion of IL-8 and IL-18 as compared to wild-type infections. In contrast, moDC maturation remained unaffected. Inhibition of caspase-8 restored secretion of both molecules. Knock-out of streptolysin O in GAS strain with unaffected CovR/S even further elevated the IL-18 secretion by moDCs. Of 67 fully sequenced NSTI GAS isolates, 28 harbored mutations resulting in dysfunctional CovR/S. However, analyses of plasma IL-8 and IL-18 levels did not correlate with presence or absence of such mutations. CONCLUSIONS: Our data demonstrate that strains, which harbor covR/S mutations, interfere with IL-18 and IL-8 responses in monocytic cells by utilizing the caspase-8 axis. Future experiments aim to identify the underlying mechanism and consequences for NSTI patients.


Monocytes , Streptococcus pyogenes , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caspase 8 , Cytokines/genetics , Interleukin-18/genetics , Interleukin-8 , Monocytes/metabolism , Streptococcus pyogenes/genetics
3.
Microbiol Spectr ; 11(6): e0177823, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37819116

IMPORTANCE: In the expanding market of recombinant proteins, microbial cell factories such as Bacillus subtilis are key players. Microbial cell factories experience secretion stress during high-level production of secreted proteins, which can negatively impact product yield and cell viability. The CssRS two-component system and CssRS-regulated quality control proteases HtrA and HtrB play critical roles in the secretion stress response. HtrA has a presumptive dual function in protein quality control by exerting both chaperone-like and protease activities. However, its potential role as a chaperone has not been explored in B. subtilis. Here, we describe for the first time the beneficial effects of proteolytically inactive HtrA on α-amylase yields and overall bacterial fitness.


Bacterial Proteins , Peptide Hydrolases , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Molecular Chaperones/metabolism
4.
Front Immunol ; 14: 1229562, 2023.
Article En | MEDLINE | ID: mdl-37731490

Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1.


Shock, Septic , Staphylococcal Infections , Humans , Staphylococcus aureus , Alleles , Genome-Wide Association Study , Shock, Septic/genetics , Superantigens/genetics , Staphylococcal Infections/genetics
5.
Proteomics ; : e2300294, 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37772677

In proteomics, fast, efficient, and highly reproducible sample preparation is of utmost importance, particularly in view of fast scanning mass spectrometers enabling analyses of large sample series. To address this need, we have developed the web application MassSpecPreppy that operates on the open science OT-2 liquid handling robot from Opentrons. This platform can prepare up to 96 samples at once, performing tasks like BCA protein concentration determination, sample digestion with normalization, reduction/alkylation and peptide elution into vials or loading specified peptide amounts onto Evotips in an automated and flexible manner. The performance of the developed workflows using MassSpecPreppy was compared with standard manual sample preparation workflows. The BCA assay experiments revealed an average recovery of 101.3% (SD: ± 7.82%) for the MassSpecPreppy workflow, while the manual workflow had a recovery of 96.3% (SD: ± 9.73%). The species mix used in the evaluation experiments showed that 94.5% of protein groups for OT-2 digestion and 95% for manual digestion passed the significance thresholds with comparable peptide level coefficient of variations. These results demonstrate that MassSpecPreppy is a versatile and scalable platform for automated sample preparation, producing injection-ready samples for proteomics research.

6.
BMC Microbiol ; 23(1): 37, 2023 02 10.
Article En | MEDLINE | ID: mdl-36759782

BACKGROUND: The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members. RESULTS: We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt, Δbc1009 and ΔsigB deletion mutants under heat stress at 42 °C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50 °C after pre-adaptation at 42 °C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of ΔsigB cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30 °C revealed 96 proteins with SigB and Bc1009-dependent differences in levels: 51 were also identified under heat stress, and 45 showed significant differential expression at 30 °C. This includes proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30 °C and 42 °C included proteins involved in motility, and ΔsigB and Δbc1009 cells showed reduced motility compared to wt cells in swimming assays at both temperatures. CONCLUSION: Our results extend the B. cereus SigB regulon to > 300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of  > 180 members, conceivably via interactions with other transcriptional regulatory networks.


Bacillus cereus , Proteome , Bacillus cereus/metabolism , Proteome/analysis , Regulon , Bacterial Proteins/metabolism , Heat-Shock Response , Sigma Factor/genetics , Sigma Factor/metabolism , Gene Expression Regulation, Bacterial
7.
Oncoimmunology ; 11(1): 2148850, 2022.
Article En | MEDLINE | ID: mdl-36507091

BCL11B, an essential transcription factor for thymopoiesis, regulates also vital processes in post-thymic lymphocytes. Increased expression of BCL11B was recently correlated with the maturation of NK cells, whereas reduced BCL11B levels were observed in native and induced T cell subsets displaying NK cell features. We show that BCL11B-depleted CD8+ T cells stimulated with IL-15 acquired remarkable innate characteristics. These induced innate CD8+ (iiT8) cells expressed multiple innate receptors like NKp30, CD161, and CD16 as well as factors regulating migration and tissue homing while maintaining their T cell phenotype. The iiT8 cells effectively killed leukemic cells spontaneously and neuroblastoma spheroids in the presence of a tumor-specific monoclonal antibody mediated by CD16 receptor activation. These iiT8 cells integrate the innate natural killer cell activity with adaptive T cell longevity, promising an interesting therapeutic potential. Our study demonstrates that innate T cells, albeit of limited clinical applicability given their low frequency, can be efficiently generated from peripheral blood and applied for adoptive transfer, CAR therapy, or combined with therapeutic antibodies.


Interleukin-15 , T-Lymphocytes, Cytotoxic , Interleukin-15/pharmacology , Interleukin-15/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Transcription Factors/metabolism
8.
J Oral Microbiol ; 14(1): 2138251, 2022.
Article En | MEDLINE | ID: mdl-36338832

Background: Dental plaque consists of a diverse microbial community embedded in a complex structure of exopolysaccharides. Dental biofilms form a natural barrier against pathogens but lead to oral diseases in a dysbiotic state. Objective: Using a metaproteome approach combined with a standard plaque-regrowth study, this pilot study examined the impact of different concentrations of lactoperoxidase (LPO) on early plaque formation, and active biological processes. Design: Sixteen orally healthy subjects received four local treatments as a randomized single-blind study based on a cross-over design. Two lozenges containing components of the LPO-system in different concentrations were compared to a placebo and Listerine®. The newly formed dental plaque was analyzed by mass spectrometry (nLC-MS/MS). Results: On average 1,916 metaproteins per sample were identified, which could be assigned to 116 genera and 1,316 protein functions. Listerine® reduced the number of metaproteins and their relative abundance, confirming the plaque inhibiting effect. The LPO-lozenges triggered mainly higher metaprotein abundances of early and secondary colonizers as well as bacteria associated with dental health but also periodontitis. Functional information indicated plaque biofilm growth. Conclusion: In conclusion, the mechanisms on plaque biofilm formation of Listerine® and the LPO-system containing lozenges are different. In contrast to Listerine®, the lozenges led to a higher bacterial diversity.

9.
Commun Biol ; 5(1): 622, 2022 06 27.
Article En | MEDLINE | ID: mdl-35761021

Stressosomes are stress-sensing protein complexes widely conserved among bacteria. Although a role in the regulation of the general stress response is well documented in Gram-positive bacteria, the activating signals are still unclear, and little is known about the physiological function of stressosomes in the Gram-negative bacteria. Here we investigated the stressosome of the Gram-negative marine pathogen Vibrio vulnificus. We demonstrate that it senses oxygen and identified its role in modulating iron-metabolism. We determined a cryo-electron microscopy structure of the VvRsbR:VvRsbS stressosome complex, the first solved from a Gram-negative bacterium. The structure points to a variation in the VvRsbR and VvRsbS stoichiometry and a symmetry breach in the oxygen sensing domain of VvRsbR, suggesting how signal-sensing elicits a stress response. The findings provide a link between ligand-dependent signaling and an output - regulation of iron metabolism - for a stressosome complex.


Vibrio vulnificus , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Gene Expression Regulation, Bacterial , Iron/metabolism , Oxygen/metabolism , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism
10.
Sci Rep ; 12(1): 7569, 2022 05 09.
Article En | MEDLINE | ID: mdl-35534617

The tegument, as the surface layer of adult male and female Schistosoma spp. represents the protective barrier of the worms to the hostile environment of the host bloodstream. Here we present the first comparative analysis of sex-specific tegument proteins of paired or virgin Schistosoma mansoni. We applied a new and highly sensitive workflow, allowing detection of even low abundance proteins. Therefore, a streptavidin-biotin affinity purification technique in combination with single pot solid-phase enhanced sample preparation was established for subsequent LC-MS/MS analysis. We were able to identify 1519 tegument proteins for male and female virgin and paired worms and categorized them by sex. Bioinformatic analysis revealed an involvement of female-specific tegument proteins in signaling pathways of cellular processes and antioxidant mechanisms. Male-specific proteins were found to be enriched in processes linked to phosphorylation and signal transduction. This suggests a task sharing between the sexes that might be necessary for survival in the host. Our datasets provide a basis for further studies to understand and ultimately decipher the strategies of the two worm sexes to evade the immune system.


Proteome , Schistosoma mansoni , Animals , Chromatography, Liquid , Female , Helminth Proteins/metabolism , Male , Proteome/metabolism , Schistosoma mansoni/metabolism , Tandem Mass Spectrometry
11.
Haematologica ; 107(4): 947-957, 2022 04 01.
Article En | MEDLINE | ID: mdl-35045692

Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.


COVID-19 , Vaccines , Ad26COVS1 , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2
12.
Altern Ther Health Med ; 28(6): 72-81, 2022 Sep.
Article En | MEDLINE | ID: mdl-32619204

Context: Endurance running places substantial physiological strain on the body, which can develop into chronic inflammation and overuse injuries, negatively affecting subsequent training and performance. A recent study found that dietary polyphenols and methlysulfonylmethane (MSM) can reduce systemic inflammation and oxidative stress without adverse side effects. Objective: The purpose was to identify a set of candidate protein and RNA biomarkers that are associated with improved outcomes related to inflammation and muscle injury, when athletes used 3 proprietary supplements both prior to and during early recovery from a half-marathon race. Design: The study was an open-label pilot study. Setting: The study was field based, with sample analysis conducted in the Applied Physiology Laboratory in the Department of Kinesiology, Health Promotion and Recreation at the University of North Texas in Denton, Texas. Participants: Participants were 15 young, exercise-trained men and women. Intervention: The intervention group consumed 1000 mg/d of a proprietary 50-50 mix of optimized curcumin and pomegranate extract for 26 days. The group also consumed 500 mg/d of a proprietary MSM for the same period. Three days prior to and one day after a race, the daily dosage was doubled. The control group received no supplements. Outcome Measures: Venous blood samples were collected at pre-race and at 4h and 24h after running a half-marathon race. The research team evaluated results for target proteins that have been associated with inflammation and muscle injury in the scientific literature. The team also performed an analysis of RNA biomarkers. Results: At the 4h and 24h time points, a significant treatment-response was observed that included increases in proteins: (1) osteonectin/SPARC-osteonectin/secreted protein acidic and rich in cysteine and (2) BDNF-brain-derived neurotrophic factor. At the same points, the study also found increased RNA: (1) PACER-P50-associated COX-2 extragenic RNA, (2) PTGES-prostaglandin E synthase, (3) MYD88-innate immune signal transduction adaptor MYD88, (4) TNFS14-tumor necrosis factor (TNF) superfamily member 14, (5) THRIL-TNF and heterogeneous nuclear ribonucleoprotein L (HNRNPL)-related immunoregulatory long noncoding RNA, (6) TRAF6-TNF receptor associated factor 6, (7) CX3CL1-C-X3-C motif chemokine ligand 1, (8) MALAT1-metastasis-associated lung adenocarcinoma transcript 1, and (9) LINC00305-long intergenic nonprotein coding RNA 305. Conclusions: The combination of polyphenol and MSM supplementation resulted in a systemic response that may translate to an accelerated rate of muscle recovery, allowing participants return to exercise and normal activities more quickly. This pilot study is the foundation for a larger investigation in the research team's laboratory.


Curcumin , Pomegranate , Sexual and Gender Minorities , Biomarkers , Curcumin/pharmacology , Curcumin/therapeutic use , Dietary Supplements , Dimethyl Sulfoxide , Female , Homosexuality, Male , Humans , Inflammation/drug therapy , Male , Marathon Running , Myeloid Differentiation Factor 88 , Osteonectin , Pilot Projects , Plant Extracts , Polyphenols , RNA , Sulfones , Systemic Inflammatory Response Syndrome
13.
Blood ; 138(22): 2256-2268, 2021 12 02.
Article En | MEDLINE | ID: mdl-34587242

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Antigen-Antibody Complex/immunology , Autoantibodies/immunology , COVID-19/prevention & control , Capsid Proteins/adverse effects , ChAdOx1 nCoV-19/adverse effects , Drug Contamination , Genetic Vectors/adverse effects , HEK293 Cells/immunology , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/ultrastructure , Autoantibodies/biosynthesis , Capillary Leak Syndrome/etiology , Capsid Proteins/immunology , Cell Line, Transformed , ChAdOx1 nCoV-19/chemistry , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/toxicity , Dynamic Light Scattering , Epitopes/chemistry , Epitopes/immunology , Extracellular Traps/immunology , Extravasation of Diagnostic and Therapeutic Materials/etiology , Genetic Vectors/immunology , HEK293 Cells/chemistry , Humans , Imaging, Three-Dimensional , Immunoglobulin G/biosynthesis , Inflammation , Mice , Microscopy/methods , Platelet Activation , Proteomics , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/immunology , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
14.
ACS Synth Biol ; 10(10): 2767-2771, 2021 10 15.
Article En | MEDLINE | ID: mdl-34587446

To better understand cellular life, it is essential to decipher the contribution of individual components and their interactions. Minimal genomes are an important tool to investigate these interactions. Here, we provide a database of 105 fully annotated genomes of a series of strains with sequential deletion steps of the industrially relevant model bacterium Bacillus subtilis starting with the laboratory wild type strain B. subtilis 168 and ending with B. subtilis PG38, which lacks approximately 40% of the original genome. The annotation is supported by sequencing of key intermediate strains as well as integration of literature knowledge for the annotation of the deletion scars and their potential effects. The strain compendium presented here represents a comprehensive genome library of the entire MiniBacillus project. This resource will facilitate the more effective application of the different strains in basic science as well as in biotechnology.


Bacillus subtilis/genetics , Genome, Bacterial
15.
Vet Res ; 52(1): 112, 2021 Aug 25.
Article En | MEDLINE | ID: mdl-34433500

A vaccine protecting against different Streptococcus suis serotypes is highly needed in porcine practice to improve animal welfare and reduce the use of antibiotics. We hypothesized that immunogens prominently recognized by convalescence sera but significantly less so by sera of susceptible piglets are putative protective antigens. Accordingly, we investigated immunogenicity and protective efficacy of a multicomponent vaccine including six main conserved immunogens, namely SSU0934, SSU1869, SSU0757, SSU1950, SSU1664 and SSU0187. Flow cytometry confirmed surface expression of all six immunogens in S. suis serotypes 2, 9 and 14. Although prime-booster vaccination after weaning resulted in significantly higher specific IgG levels against all six immunogens compared to the placebo-treated group, no significant differences between bacterial survival in blood from either vaccinated or control animals were recorded for serotype 2, 9 and 14 strains. Furthermore, vaccinated piglets were not protected against morbidity elicited through intranasal challenge with S. suis serotype 14. As ~50% of animals in both groups did not develop disease, we investigated putative other correlates of protection. Induction of reactive oxygen species (ROS) in blood granulocytes was not associated with vaccination but correlated with protection as all piglets with >5% ROS survived the challenge. Based on these findings we discuss that the main immunogens of S. suis might actually not be a priori good candidates for protective antigens. On the contrary, expression of immunogens that evoke antibodies that do not mediate killing of this pathogen might constitute an evolutionary advantage conserved in many different S. suis strains.


Immunogenicity, Vaccine , Streptococcal Infections/veterinary , Streptococcal Vaccines/immunology , Streptococcus suis/immunology , Swine Diseases/prevention & control , Animals , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcal Vaccines/administration & dosage , Sus scrofa , Swine , Swine Diseases/microbiology , Treatment Outcome
16.
mSystems ; 6(2)2021 Mar 02.
Article En | MEDLINE | ID: mdl-33653939

Mechanically ventilated patients are at risk of contracting pneumonia. Therefore, these patients often receive prophylactic systemic antimicrobial therapy. Intriguingly however, a previous study showed that antimicrobial activity in bronchoalveolar aspirates (here referred to as "sputa") from ventilated patients was only partially explained by antibiotic therapy. Here we report that sputa from these patients presented distinct proteome signatures depending on the presence or absence of antimicrobial activity. Moreover, we show that the same distinction applied to antibodies against Streptococcus pneumoniae, which is a major causative agent of pneumonia. Specifically, the investigated sputa that inhibited growth of S. pneumoniae, while containing subinhibitory levels of the antibiotic cefotaxime, presented elevated levels of proteins implicated in innate immune defenses, including complement and apolipoprotein-associated proteins. In contrast, S. pneumoniae-inhibiting sputa with relatively high cefotaxime concentrations or noninhibiting sputa contained higher levels of proteins involved in inflammatory responses, such as neutrophil elastase-associated proteins. In an immunoproteomics analysis, 18 out of 55 S. pneumoniae antigens tested showed significantly increased levels of IgGs in inhibiting sputa. Hence, proteomics and immunoproteomics revealed elevated levels of antimicrobial host proteins or S. pneumoniae antigen-specific IgGs in pneumococcal growth-inhibiting sputa, thus explaining their anti-pneumococcal activity.IMPORTANCE Respiratory pathogens like Streptococcus pneumoniae can cause severe pneumonia. Nonetheless, mechanically ventilated intensive care patients, who have a high risk of contracting pneumonia, rarely develop pneumococcal pneumonia. This suggests the presence of potentially protective antimicrobial agents in their lung environment. Our present study shows for the first time that bronchoalveolar aspirates, "sputa," of ventilated patients in a Dutch intensive care unit were characterized by three distinct groups of proteome abundance signatures that can explain their anti-pneumococcal activity. Importantly, this anti-pneumococcal sputum activity was related either to elevated levels of antimicrobial host proteins or to antibiotics and S. pneumoniae-specific antibodies. Further, the sputum composition of some patients changed over time. Therefore, we conclude that our study may provide a novel tool to measure changes that are indicative of infection-related conditions in the lungs of mechanically ventilated patients.

17.
Front Immunol ; 12: 651619, 2021.
Article En | MEDLINE | ID: mdl-33777051

Our goal was to provide a comprehensive overview of the antibody response to Staphylococcus aureus antigens in the general population as a basis for defining disease-specific profiles and diagnostic signatures. We tested the specific IgG and IgA responses to 79 staphylococcal antigens in 996 individuals from the population-based Study of Health in Pomerania. Using a dilution-based multiplex suspension array, we extended the dynamic range of specific antibody detection to seven orders of magnitude, allowing the precise quantification of high and low abundant antibody specificities in the same sample. The observed IgG and IgA antibody responses were highly heterogeneous with differences between individuals as well as between bacterial antigens that spanned several orders of magnitude. Some antigens elicited significantly more IgG than IgA and vice versa. We confirmed a strong influence of colonization on the antibody response and quantified the influence of sex, smoking, age, body mass index, and serum glucose on anti-staphylococcal IgG and IgA. However, all host parameters tested explain only a small part of the extensive variability in individual response to the different antigens of S. aureus.


Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Biological Variation, Population/immunology , Staphylococcal Infections/blood , Staphylococcus aureus/immunology , Age Factors , Antibodies, Bacterial/immunology , Body Mass Index , Female , Germany , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Serologic Tests/statistics & numerical data , Sex Factors , Smoking/blood , Smoking/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology
18.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Article En | MEDLINE | ID: mdl-33446586

Streptococcus suis is an important pathogen of pigs that, as a zoonotic agent, can also cause severe disease in humans, including meningitis, endocarditis, and septicemia. We report complete and annotated genomes of S. suis strains 10, 13-00283-02, and 16085/3b, which represent the highly prevalent serotypes cps2, cps7, and cps9, respectively.

19.
J Diet Suppl ; 18(5): 461-477, 2021.
Article En | MEDLINE | ID: mdl-32657201

Endurance running training can lead to gradual accumulation of inflammation and soreness ultimately resulting in overuse injuries. Management of soreness and inflammation with pharmaceuticals (i.e. non-prescription pain relievers) during long-term training is not a suitable solution due to known side effects (e.g. gastrointestinal complications, etc.). Dietary polyphenols (i.e. curcumin, pomegranate, etc.) have been purported to reduce inflammation and muscle soreness, without these negative side effects making them ideal for use in an exercise model. The purpose of the present feasibility study was to explore the combined effect of optimized curcumin and pomegranate extract supplementation prior to (PRE) and after (4H and 24H) an organized half-marathon race on blood inflammatory proteins and inflammation-associated RNA. Daily supplementation (1000 mg/d) started 26 days before a half-marathon which doubled on days 27-31. Data were analyzed with R software and Welch t-test, significance set at p < 0.05. At both 4H and 24H, supplementation was associated with alterations in protein (IL-10, IL-13, IL-4, ITAC, MIP-1alpha, MIP-3alpha, BDNF, sIL-2Ralpha, and TNF-alpha; p < 0.05) and RNA (CCL22, GUSB, IL-6, LINC00305, NKILA, PTGES, THRIL, TRAF6, ARG2, CD1A, CD55, CFI, CSF2, CXC3CL1, CX3CR1, EDNRB, GATA3, LILRB5, THY1, CD3D, MRC1, GPR183, HAMP, MBL2, CASP3, B2M, KLRF2, PDCD1LG2, IL-10, PTGS2, TLR2, IL-6R, IL-8, IL-7R, MASP1, MYD88, TNFRSF1B, TNFRSF1A, and TIRAP; p < 0.05) biomarkers compared to control. Pathway classification of these biomarkers indicated supplementation may be associated with a more favorable muscle recovery profile. Our findings support the notion that combined curcumin and pomegranate supplementation may represent a useful addition to a comprehensive exercise training plan.


Curcumin , Dietary Supplements , Inflammation , Marathon Running , Pomegranate , Sports Nutritional Physiological Phenomena , Antigens, CD , Curcumin/administration & dosage , Feasibility Studies , Humans , Mannose-Binding Lectin , Muscle, Skeletal , Receptors, Immunologic
20.
Bone ; 141: 115675, 2020 12.
Article En | MEDLINE | ID: mdl-33031973

OBJECTIVE: YKL-40, also known as chitinase-3-like protein 1, is a new proinflammatory biomarker, that might play a role in tissue remodeling and bone resorption. Here we evaluated the associations of the YKL-40 plasma concentration with heel ultrasound parameters and bone turnover markers (BTMs) in adult men and women from the general population. We tested for a causal role of YKL-40 on bone metabolism using published single nucleotide polymorphisms (SNPs) with consequences for YKL-40 expression and function. METHODS: Data were obtained from two population-based cohorts: the Study of Health in Pomerania (SHIP) and SHIP-Trend. Quantitative ultrasound (QUS) measurements at the heel were performed and bone turnover was assessed by measurement of intact amino-terminal propeptide of type I procollagen (PINP) and carboxy-terminal telopeptide of type I collagen (CTX). Associations between the YKL-40 plasma concentration and the QUS-based parameters, bone turnover marker (BTM) concentrations and 44 SNPs, including the lead SNP rs4950928, were evaluated in 382 subjects. Furthermore, we assessed the associations between the same SNPs and the QUS-based parameters (n = 5777) or the BTM concentrations (n = 7190). RESULTS: Sex-specific linear regression models adjusted for a comprehensive panel of interfering covariantes revealed statistically significant inverse associations between YKL-40 and all QUS-based parameters as well as positive associations with CTX in women. The rs4950928 polymorphism was associated with YKL-40 in men and women but none of the tested SNPs was associated with the QUS-based parameters or the BTMs after correction for multiple testing. CONCLUSIONS: Plasma YKL-40 concentrations are associated with QUS-based parameters as well as CTX concentrations in women but these associations are probably not causal.


Bone Remodeling , Heel , Adult , Biomarkers , Bone Density , Chitinase-3-Like Protein 1/genetics , Collagen Type I/genetics , Female , Heel/diagnostic imaging , Humans , Male , Procollagen , Ultrasonography
...