Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598639

RESUMEN

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Asunto(s)
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona , Microscopía por Crioelectrón , Glicina/metabolismo , Neurotransmisores , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961151

RESUMEN

Adenosine triphosphate (ATP) serves as an extracellular messenger that mediates diverse cell-to-cell communication. Compelling evidence supports that ATP is released from cells through pannexins, a family of heptameric large pore-forming channels. However, the activation mechanisms that trigger ATP release by pannexins remain poorly understood. Here, we discover lysophospholipids as endogenous pannexin activators, using activity-guided fractionation of mouse tissue extracts combined with untargeted metabolomics and electrophysiology. We show that lysophospholipids directly and reversibly activate pannexins in the absence of other proteins. Molecular docking, mutagenesis, and single-particle cryo-EM reconstructions suggest that lysophospholipids open pannexin channels by altering the conformation of the N-terminal domain. Our results provide a connection between lipid metabolism and ATP signaling, both of which play major roles in inflammation and neurotransmission. One-Sentence Summary: Untargeted metabolomics discovers a class of messenger lipids as endogenous activators of membrane channels important for inflammation and neurotransmission.

3.
Nat Struct Mol Biol ; 29(6): 507-518, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637422

RESUMEN

Excitatory signaling mediated by N-methyl-D-aspartate receptor (NMDAR) is critical for brain development and function, as well as for neurological diseases and disorders. Channel blockers of NMDARs are of medical interest owing to their potential for treating depression, Alzheimer's disease, and epilepsy. However, precise mechanisms underlying binding and channel blockade have remained limited owing to challenges in obtaining high-resolution structures at the binding site within the transmembrane domains. Here, we monitor the binding of three clinically important channel blockers: phencyclidine, ketamine, and memantine in GluN1-2B NMDARs at local resolutions of 2.5-3.5 Å around the binding site using single-particle electron cryo-microscopy, molecular dynamics simulations, and electrophysiology. The channel blockers form different extents of interactions with the pore-lining residues, which control mostly off-speeds but not on-speeds. Our comparative analyses of the three unique NMDAR channel blockers provide a blueprint for developing therapeutic compounds with minimal side effects.


Asunto(s)
Ketamina , Receptores de N-Metil-D-Aspartato , Sitios de Unión , Memantina/farmacología , Simulación de Dinámica Molecular , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Nat Commun ; 13(1): 923, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177668

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/ultraestructura , Clonación Molecular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/farmacología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/aislamiento & purificación , Región Variable de Inmunoglobulina/farmacología , Región Variable de Inmunoglobulina/ultraestructura , Simulación de Dinámica Molecular , Oocitos , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/ultraestructura , Células Sf9 , Spodoptera , Xenopus laevis
5.
Methods Enzymol ; 653: 3-19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34099177

RESUMEN

Despite major advances in methodologies for membrane protein production over the last two decades, there remain challenging protein complexes that are technically difficult to yield by conventional recombinant expression methods. A large number of these proteins are multimeric membrane proteins from eukaryotic species, which are required to pass through stringent quality control mechanisms of host cells for proper folding and complex assembly. Here, we describe the development procedure to improve the production efficiency of multi-oligomeric membrane protein complexes in insect cells and recombinant baculovirus, which involves screening of promoters, enhancers, and untranslated regions for expression levels, using calcium homeostasis modulator (CALHM) and N-methyl-d-aspartate receptor (NMDAR) proteins as examples. We demonstrate that our insect cell expression strategy is effective in expression of both multi-homomeric CALHM proteins and multi-heteromeric NMDARs.


Asunto(s)
Baculoviridae , Proteínas de la Membrana , Animales , Baculoviridae/genética , Insectos , Proteínas de la Membrana/genética , Receptores de N-Metil-D-Aspartato
6.
J Mol Biol ; 433(17): 166994, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33865869

RESUMEN

Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called "large-pore channel" exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.


Asunto(s)
Canales Iónicos/metabolismo , Iones/metabolismo , Animales , Transporte Biológico/fisiología , Uniones Comunicantes/metabolismo , Humanos
7.
Nat Struct Mol Biol ; 27(3): 305, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066965

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Elife ; 92020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32048993

RESUMEN

Pannexins are large-pore forming channels responsible for ATP release under a variety of physiological and pathological conditions. Although predicted to share similar membrane topology with other large-pore forming proteins such as connexins, innexins, and LRRC8, pannexins have minimal sequence similarity to these protein families. Here, we present the cryo-EM structure of a frog pannexin 1 (Panx1) channel at 3.0 Å. We find that Panx1 protomers harbor four transmembrane helices similar in arrangement to other large-pore forming proteins but assemble as a heptameric channel with a unique constriction formed by Trp74 in the first extracellular loop. Mutating Trp74 or the nearby Arg75 disrupt ion selectivity, whereas altering residues in the hydrophobic groove formed by the two extracellular loops abrogates channel inhibition by carbenoxolone. Our structural and functional study establishes the extracellular loops as important structural motifs for ion selectivity and channel inhibition in Panx1.


Asunto(s)
Conexinas/ultraestructura , Proteínas de Xenopus/ultraestructura , Secuencia de Aminoácidos , Animales , Carbenoxolona/farmacología , Conexinas/antagonistas & inhibidores , Conexinas/química , Conexinas/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Nat Struct Mol Biol ; 27(2): 150-159, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31988524

RESUMEN

The biological membranes of many cell types contain large-pore channels through which a wide variety of ions and metabolites permeate. Examples include connexin, innexin and pannexin, which form gap junctions and/or bona fide cell surface channels. The most recently identified large-pore channels are the calcium homeostasis modulators (CALHMs), through which ions and ATP permeate in a voltage-dependent manner to control neuronal excitability, taste signaling and pathologies of depression and Alzheimer's disease. Despite such critical biological roles, the structures and patterns of their oligomeric assembly remain unclear. Here, we reveal the structures of two CALHMs, chicken CALHM1 and human CALHM2, by single-particle cryo-electron microscopy (cryo-EM), which show novel assembly of the four transmembrane helices into channels of octamers and undecamers, respectively. Furthermore, molecular dynamics simulations suggest that lipids can favorably assemble into a bilayer within the larger CALHM2 pore, but not within CALHM1, demonstrating the potential correlation between pore size, lipid accommodation and channel activity.


Asunto(s)
Proteínas Aviares/metabolismo , Canales de Calcio/metabolismo , Pollos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Calcio/metabolismo , Canales de Calcio/química , Microscopía por Crioelectrón , Homeostasis , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
10.
J Gen Physiol ; 150(12): 1758-1768, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30377218

RESUMEN

Pannexins are a family of ATP release channels important for physiological and pathological processes like blood pressure regulation, epilepsy, and neuropathic pain. To study these important channels in vitro, voltage stimulation is the most common and convenient tool, particularly for pannexin 1 (Panx1). However, whether Panx1 is a voltage-gated channel remains controversial. Here, we carefully examine the effect of N-terminal modification on voltage-dependent Panx1 channel activity. Using a whole-cell patch-clamp recording technique, we demonstrate that both human and mouse Panx1, with their nativeN termini, give rise to voltage-dependent currents, but only at membrane potentials larger than +100 mV. This weak voltage-dependent channel activity profoundly increases when a glycine-serine (GS) motif is inserted immediately after the first methionine. Single-channel recordings reveal that the addition of GS increases the channel open probability as well as the number of unitary conductance classes. We also find that insertions of other amino acid(s) at the same position mimics the effect of GS. On the other hand, tagging the N terminus with GFP abolishes voltage-dependent channel activity. Our results suggest that Panx1 is a channel with weak voltage dependence whose activity can be tuned by N-terminal modifications.


Asunto(s)
Conexinas/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Potenciales de la Membrana , Mutagénesis Insercional , Técnicas de Placa-Clamp
11.
Elife ; 62017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28920575

RESUMEN

The P2X7 receptor mediates extracellular ATP signaling implicated in the development of devastating diseases such as chronic pain and cancer. Activation of the P2X7 receptor leads to opening of the characteristic dye-permeable membrane pore for molecules up to ~900 Da. However, it remains controversial what constitutes this peculiar pore and how it opens. Here we show that the panda receptor, when purified and reconstituted into liposomes, forms an intrinsic dye-permeable pore in the absence of other cellular components. Unexpectedly, we found that this pore opens independent of its unique C-terminal domain. We also found that P2X7 channel activity is facilitated by phosphatidylglycerol and sphingomyelin, but dominantly inhibited by cholesterol through direct interactions with the transmembrane domain. In combination with cell-based functional studies, our data suggest that the P2X7 receptor itself constitutes a lipid-composition dependent dye-permeable pore, whose opening is facilitated by palmitoylated cysteines near the pore-lining helix.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Colorantes/metabolismo , Lípidos de la Membrana/análisis , Receptores Purinérgicos P2X7/metabolismo , Animales , Técnicas de Placa-Clamp , Ursidae
12.
J Gen Physiol ; 147(2): 165-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26755773

RESUMEN

Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.


Asunto(s)
Carbenoxolona/farmacología , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potasio/metabolismo , Unión Proteica/efectos de los fármacos
13.
J Biol Chem ; 289(36): 25262-75, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049229

RESUMEN

G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied receptors initiating the processes of desensitization and ß-arrestin-dependent signaling. Interaction of GRKs with activated receptors serves to stimulate their kinase activity. The extreme N-terminal helix (αN), the kinase small lobe, and the active site tether (AST) of the AGC kinase domain have previously been implicated in mediating the allosteric activation. Expanded mutagenesis of the αN and AST allowed us to further assess the role of these two regions in kinase activation and receptor phosphorylation in vitro and in intact cells. We also developed a bioluminescence resonance energy transfer-based assay to monitor the recruitment of GRK2 to activated α(2A)-adrenergic receptors (α(2A)ARs) in living cells. The bioluminescence resonance energy transfer signal exhibited a biphasic response to norepinephrine concentration, suggesting that GRK2 is recruited to Gßγ and α(2A)AR with EC50 values of 15 nM and 8 µM, respectively. We show that mutations in αN (L4A, V7E, L8E, V11A, S12A, Y13A, and M17A) and AST (G475I, V477D, and I485A) regions impair or potentiate receptor phosphorylation and/or recruitment. We suggest that a surface of GRK2, including Leu(4), Val(7), Leu(8), Val(11), and Ser(12), directly interacts with receptors, whereas residues such as Asp(10), Tyr(13), Ala(16), Met(17), Gly(475), Val(477), and Ile(485) are more important for kinase domain closure and activation. Taken together with data on GRK1 and GRK6, our data suggest that all three GRK subfamilies make conserved interactions with G protein-coupled receptors, but there may be unique interactions that influence selectivity.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/química , Simulación del Acoplamiento Molecular/métodos , Mapeo de Interacción de Proteínas/métodos , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Dominio Catalítico , Chlorocebus aethiops , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Cinética , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Genetics ; 196(4): 1117-29, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24514904

RESUMEN

Females and males of sexually reproducing animals must cooperate at the molecular and cellular level for fertilization to succeed, even though some aspects of reproductive molecular biology appear to involve antagonistic interactions. We previously reported the existence of a proteolytic cascade in Drosophila melanogaster seminal fluid that is initiated in the male and ends in the female. This proteolytic cascade, which processes at least two seminal fluid proteins (Sfps), is a useful model for understanding the regulation of Sfp activities, including proteolysis cascades in mammals. Here, we investigated the activation mechanism of the downstream protease in the cascade, the astacin-family metalloprotease Seminal metalloprotease-1 (Semp1, CG11864), focusing on the relative contribution of the male and female to its activation. We identified a naturally occurring semp1 null mutation within the Drosophila Genetic Reference Panel. By expressing mutant forms of Semp1 in males homozygous for the null mutation, we discovered that cleavage is required for the complete activation of Semp1, and we defined at least two sites that are essential for this activational cleavage. These amino acid residues suggest a two-step mechanism for Semp1 activation, involving the action of at least two male-derived proteases. Although the cascade's substrates potentially influence both fertility and sperm competition within the mated female, the role of female factors in the activation or activity of Semp1 is unknown. We show here that Semp1 can undergo its activational cleavage in male ejaculates, without female contributions, but that cleavage of Semp1's substrates does not proceed to completion in ejaculates, indicating an essential role for female factors in Semp1's full activity. In addition, we find that expression of Semp1 in virgin females demonstrates that females can activate this protease on their own, resulting in activity that is complete but substantially delayed.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Metaloproteasas/genética , Metaloproteasas/metabolismo , Semen/enzimología , Animales , Drosophila melanogaster/fisiología , Femenino , Fertilidad , Péptidos y Proteínas de Señalización Intercelular , Masculino , Mutación , Péptidos/metabolismo , Proteolisis , Conducta Sexual Animal/fisiología , Transducción de Señal , Espermatozoides/fisiología
15.
Methods Enzymol ; 521: 347-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23351749

RESUMEN

G-protein-coupled receptor (GPCR) kinases (GRKs) were first identified based on their ability to specifically phosphorylate activated GPCRs. Although many soluble substrates have since been identified, the chief physiological role of GRKs still remains the uncoupling of GPCRs from heterotrimeric G-proteins by promoting ß-arrestin binding through the phosphorylation of the receptor. It is expected that GRKs recognize activated GPCRs through a docking site that not only recognizes the active conformation of the transmembrane domain of the receptor but also stabilizes a more catalytically competent state of the kinase domain. Many of the recent gains in understanding GRK-receptor interactions have been gleaned through biochemical and structural analysis of recombinantly expressed GRKs. Described herein are current techniques and procedures being used to express, purify, and assay GRKs in both in vitro and living cells.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/aislamiento & purificación , Animales , Baculoviridae/genética , Secuencia de Bases , Cromatografía en Agarosa/métodos , Cromatografía por Intercambio Iónico/métodos , Clonación Molecular/métodos , Cristalización/métodos , Quinasas de Receptores Acoplados a Proteína-G/análisis , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Vectores Genéticos/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...