Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Oncol ; 23(6): 758-767, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35588752

RESUMEN

BACKGROUND: Treatment options for malignant pleural mesothelioma are scarce. Tazemetostat, a selective oral enhancer of zeste homolog 2 (EZH2) inhibitor, has shown antitumour activity in several haematological cancers and solid tumours. We aimed to evaluate the anti-tumour activity and safety of tazemetostat in patients with measurable relapsed or refractory malignant pleural mesothelioma. METHODS: We conducted an open-label, single-arm phase 2 study at 16 hospitals in France, the UK, and the USA. Eligible patients were aged 18 years or older with malignant pleural mesothelioma of any histology that was relapsed or refractory after treatment with at least one pemetrexed-containing regimen, an Eastern Cooperative Oncology Group performance status of 0 or 1, and a life expectancy of greater than 3 months. In part 1 of the study, participants received oral tazemetostat 800 mg once on day 1 and then twice daily from day 2 onwards. In part 2, participants received oral tazemetostat 800 mg twice daily starting on day 1 of cycle 1, using a two-stage Green-Dahlberg design. Tazemetostat was administered in 21-day cycles for approximately 17 cycles. The primary endpoint of part 1 was the pharmacokinetics of tazemetostat and its metabolite at day 15 after administration of 800 mg tazemetostat, as measured by maximum serum concentration (Cmax), time to Cmax (Tmax), area under the concentration-time curve (AUC) to day 15 (AUC0-t), area under the curve from time 0 extrapolated to infinity (AUC0-∞), and the half-life (t1/2) of tazemetostat, assessed in all patients enrolled in part 1. The primary endpoint of part 2 was the disease control rate (the proportion of patients with a complete response, partial response, or stable disease) at week 12 in patients with malignant pleural mesothelioma per protocol with BAP1 inactivation determined by immunohistochemistry. The safety population included all the patients who had at least one post-dose safety assessment. This trial is now complete and is registered with ClinicalTrials.gov, NCT02860286. FINDINGS: Between July 29, 2016, and June 2, 2017, 74 patients were enrolled (13 in part 1 and 61 in part 2) and received tazemetostat, 73 (99%) of whom had BAP1-inactivated tumours. In part 1, following repeat dosing of tazemetostat at steady state, on day 15 of cycle 1, the mean Cmax was 829 ng/mL (coefficient of variation 56·3%), median Tmax was 2 h (range 1-4), mean AUC0-twas 3310 h·ng/mL (coefficient of variation 50·4%), mean AUC0-∞ was 3180 h·ng/mL (46·6%), and the geometric mean t1/2 was 3·1 h (13·9%). After a median follow-up of 35·9 weeks (IQR 20·6-85·9), the disease control rate in part 2 in patients with BAP1-inactivated malignant pleural mesothelioma was 54% (95% CI 42-67; 33 of 61 patients) at week 12. No patients had a confirmed complete response. Two patients had a confirmed partial response: one had an ongoing partial response with a duration of 18 weeks and the other had a duration of 42 weeks. The most common grade 3-4 treatment-emergent adverse events were hyperglycaemia (five [7%] patients), hyponatraemia (five [7%]), and anaemia (four [5%]); serious adverse events were reported in 25 (34%) of 74 patients. Five (7%) of 74 patients died while on study; no treatment-related deaths occurred. INTERPRETATION: Further refinement of biomarkers for tazemetostat activity in malignant pleural mesothelioma beyond BAP1 inactivation could help identify a subset of tumours that are most likely to derive prolonged benefit or shrinkage from this therapy. FUNDING: Epizyme.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias , Benzamidas/efectos adversos , Compuestos de Bifenilo , Proteína Potenciadora del Homólogo Zeste 2/genética , Inhibidores Enzimáticos/uso terapéutico , Humanos , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Morfolinas/uso terapéutico , Neoplasias/inducido químicamente , Piridonas , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa
2.
Blood Adv ; 4(13): 2886-2898, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32589730

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células B Grandes Difuso , Anticuerpos Monoclonales de Origen Murino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Rituximab/uso terapéutico
3.
Clin Cancer Res ; 25(7): 2064-2071, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642912

RESUMEN

PURPOSE: We sought to determine the mechanism of an exceptional response in a patient diagnosed with a SMARCB1/INI1-negative chordoma treated with tazemetostat, an EZH2 inhibitor, and followed by radiotherapy.Patient and Methods: In an attempt to investigate the mechanism behind this apparent abscopal effect, we interrogated tumor tissues obtained over the clinical course. We utilized next-generation sequencing, standard IHC, and employed a novel methodology of multiplex immunofluorescence analysis. RESULTS: We report an exceptional and durable response (2+ years) in a patient with SMARCB1-deleted, metastatic, poorly differentiated chordoma, a lethal disease with an overall survival of 6 months. The patient was treated for 4 weeks with tazemetostat, an EZH2 inhibitor, in a phase II clinical trial. At the time of progression she underwent radiation to the primary site and unexpectedly had a complete response at distant metastatic sites. We evaluated baseline and on-treatment tumor biopsies and demonstrate that tazemetostat resulted in pharmacodynamic inhibition of EZH2 as seen by decrease in histone trimethylation at H3K27. Tazemetostat resulted in a significant increase in intratumoral and stromal infiltration by proliferative (high Ki-67), CD8+ T cells, FoxP3+ regulatory T cells, and immune cells expressing checkpoint regulators PD-1 and LAG-3. These changes were pronounced in the stroma. CONCLUSIONS: These observations are the first demonstration in patient samples confirming that EZH2 inhibition can promote a sustained antitumor response that ultimately leads to T-cell exhaustion and checkpoint activation. This suggests that targeted alteration of the epigenetic landscape may sensitize some tumors to checkpoint inhibitors.


Asunto(s)
Cordoma/etiología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Inmunomodulación , Proteína SMARCB1/deficiencia , Adulto , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biopsia , Línea Celular Tumoral , Cordoma/metabolismo , Cordoma/patología , Cordoma/terapia , Terapia Combinada , Modelos Animales de Enfermedad , Exones , Femenino , Humanos , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Mutación , Clasificación del Tumor , Estadificación de Neoplasias , Radioterapia , Proteína SMARCB1/metabolismo , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer Ther ; 13(2): 386-98, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24344235

RESUMEN

The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antineoplásicos/farmacología , Proteínas Hedgehog/antagonistas & inhibidores , Comunicación Paracrina/efectos de los fármacos , Animales , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/inmunología , Antineoplásicos/inmunología , Antineoplásicos/farmacocinética , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Células HT29 , Proteínas Hedgehog/inmunología , Humanos , Cinética , Macaca fascicularis , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células 3T3 NIH , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Comunicación Paracrina/inmunología , Unión Proteica/inmunología , Ratas Wistar , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología , Células del Estroma/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
MAbs ; 4(6): 710-23, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23007574

RESUMEN

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Proteínas Proto-Oncogénicas c-met/inmunología , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Procesos de Crecimiento Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/inmunología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Epítopos Inmunodominantes/inmunología , Ratones , Ratones Desnudos , Morfogénesis/efectos de los fármacos , Células 3T3 NIH , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/genética , Transgenes/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Nucl Med ; 49(1): 129-134, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077531

RESUMEN

UNLABELLED: The purpose of this study was to evaluate the efficacy of CE-355621, a novel antibody against c-Met, in a subcutaneous U87 MG xenograft mouse model using (18)F-FDG small-animal PET. METHODS: CE-355621 or control vehicle was administered intraperitoneally into nude mice (drug-treated group, n = 12; control group, n = 14) with U87 MG subcutaneous tumor xenografts. Drug efficacy was evaluated over 2 wk using (18)F-FDG small-animal PET and compared with tumor volume growth curves. RESULTS: The maximum %ID/g (percentage injected dose per gram of tissue) of (18)F-FDG accumulation in mice treated with CE-355621 remained essentially unchanged over 2 wk, whereas the %ID/g of the control tumors increased 66% compared with the baseline. Significant inhibition of (18)F-FDG accumulation was seen 3 d after drug treatment, which was earlier than the inhibition of tumor volume growth seen at 7 d after drug treatment. CONCLUSION: CE-355621 is an efficacious novel antineoplastic chemotherapeutic agent that inhibits (18)F-FDG accumulation earlier than tumor volume changes in a mouse xenograft model. These results support the use of (18)F-FDG PET to assess early tumor response for CE-355621.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Fluorodesoxiglucosa F18/farmacocinética , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Radiofármacos/farmacocinética , Animales , Línea Celular Tumoral , Antagonismo de Drogas , Glioblastoma , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Tomografía de Emisión de Positrones/métodos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA