Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oral Dis ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121459

RESUMEN

OBJECTIVE: Electronic cigarette (e-cigarette) use among adults in the United States continues to rise. Particularly concerning is the impact of e-cigarette aerosol inhalation on the oral mucosa. Aerosols are derived from a heated e-liquid base of propylene glycol/glycerin (PG/G) often mixed with nicotine and chemical flavors. Of note, harmful and potentially harmful constituents (HPHCs), including metals and volatile organic compounds, have been detected in e-cigarette aerosols. It remains unknown, however, whether aerosols exclusively derived from e-liquid PG/G are detrimental to oral keratinocytes. The present study analyzed toxicological outcomes in normal oral keratinocytes exposed to model nicotine-free, unflavored PG/G e-liquid aerosols. MATERIALS AND METHODS: Cell viability/cytotoxicity, genotoxicity, and immunoblotting assays were conducted in NOKSI, a gingiva-derived oral keratinocyte cell line, following exposure to model e-liquid aerosols or non-aerosolized controls. The HPHC acrolein, reported to form DNA adducts in the buccal mucosa from e-cigarette users, was also used in similar assays. RESULTS: PG/G e-liquid aerosol extracts significantly enhanced cytotoxic and DNA damaging responses in NOKSI cells when compared to non-aerosolized e-liquid treatment. Acrolein treatment led to similar results. CONCLUSIONS: The aerosolization process of PG/G e-liquid is a critical determinant of marked cytotoxic and genotoxic stimuli in oral keratinocytes.

2.
RSC Chem Biol ; 5(6): 572-585, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846077

RESUMEN

Hydrogen sulfide (H2S) is an endogenous gasotransmitter that signals via persulfidation. There is evidence that the cysteine residues of certain zinc finger (ZF) proteins, a common type of cysteine rich protein, are modified to persulfides by H2S. To determine how frequently ZF persulfidation occurs in cells and identify the types of ZFs that are persulfidated, persulfide specific proteomics data were evaluated. 22 datasets from 16 studies were analyzed via a meta-analysis approach. Persulfidated ZFs were identified in a range of eukaryotic species, including Homo sapiens, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and Emiliania huxley (single-celled phytoplankton). The types of ZFs identified for each species encompassed all three common ZF ligand sets (4-cysteine, 3-cysteine-1-histidine, and 2-cysteine-2-hisitidine), indicating that persulfidation of ZFs is broad. Overlap analysis between different species identified several common ZFs. GO and KEGG analysis identified pathway enrichment for ubiquitin-dependent protein catabolic process and viral carcinogenesis. These collective findings support ZF persulfidation as a wide-ranging PTM that impacts all classes of ZFs.

3.
Public Health Rev ; 45: 1606862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841179

RESUMEN

Objectives: Movement-friendly environments with infrastructure favouring active mobility are important for promoting physical activity. This scoping literature review aims at identifying the current evidence for links between mobility infrastructures and (a) behaviour regarding active mobility, (b) health outcomes and (c) co-benefits. Method: This review was conducted in accordance with the PRISMA scoping review guidelines using PubMed and EMBASE databases. Studies included in this review were conducted in Europe, and published between 2000 and March 2023. Results: 146 scientific articles and grey literature reports were identified. Connectivity of sidewalks, walkability, and accessibility of shops, services and work are associated with walking. Cycling is positively associated with cycle-paths, separation of cycling from traffic and proximity to greenspaces, and negatively associated with traffic danger. Increased active transportation has a protective effect on cardiovascular and respiratory health, obesity, fitness, and quality of life. Co-benefits result from the reduction of individual motorized transportation including reduced environmental pollution and projected healthcare expenditure. Conclusion: Mobility infrastructure combined with social and educational incentives are effective in promoting active travel and reducing future healthcare expenses. A shift to active transportation would increase both individual and community health and decrease greenhouse gas emissions.

4.
Public Health Rev ; 45: 1606863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831866

RESUMEN

Objectives: Access to greenspaces and contact with nature can promote physical activity and have positive effects on physical and mental health. This scoping literature review aims to examine current evidence linking greenspaces and (a) behaviour change, (b) health outcomes and (c) co-benefits. Methods: This review was conducted in accordance with the PRISMA scoping review guidelines. Searches were conducted through PubMed and EMBASE databases for studies published between 2000 and March 2023 with a focus on Europe. Results: 122 scientific articles and grey literature reports were identified. Access to greenspaces is positively associated with physical and mental health, and reduced risk of all-cause mortality and some non-communicable diseases. Greenspace quality is associated with increased physical activity and reduced risk of obesity. Nature-based therapies or green prescription are effective in improving mental health outcomes and overall health. Importantly, numerous co-benefits of greenspaces are identified. Conclusion: Increasing access to greenspaces for populations with particular attention to greenspace quality is important for co-benefits. Responsible governance and use of greenspaces are crucial to minimize public health risks and human disturbance of nature.

5.
Angew Chem Int Ed Engl ; 63(27): e202401003, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38808693

RESUMEN

The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.


Asunto(s)
Sulfuro de Hidrógeno , Proteómica , Sulfuros , Dedos de Zinc , Zinc , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Zinc/química , Humanos , Sulfuros/química , Procesamiento Proteico-Postraduccional
7.
Cell Chem Biol ; 30(9): 1156-1168.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37689063

RESUMEN

A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.


Asunto(s)
Técnicas de Cultivo de Célula , Ensayos Analíticos de Alto Rendimiento , Humanos , Línea Celular , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Sci Rep ; 13(1): 2441, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765106

RESUMEN

Pathogenesis of COVID-19 by SARS-CoV-2 resulted in a global pandemic and public health emergency in 2020. Viral infection can induce oxidative stress through reactive oxygen species (ROS). Inflammation and environmental stress are major sources of oxidative stress after infection. Micronutrients such as iron, copper, zinc, and manganese play various roles in human tissues and their imbalance in blood can impact immune responses against pathogens including SARS CoV-2. We hypothesized that alteration of free metal ions during infection and metal-catalyzed oxidation plays a critical role towards pathogenesis after infection. We analyzed convalescent and hospitalized COVID-19 patient plasma using orthogonal analytical techniques to determine redox active metal concentrations, overall protein oxidation, oxidative modifications, and protein levels via proteomics to understand the consequences of metal-induced oxidative stress in COVID-19 plasma proteins. Metal analysis using ICP-MS showed significantly greater concentrations of copper in COVID-19 plasma compared to healthy controls. We demonstrate significantly greater total protein carbonylation, other oxidative modifications, and deamidation of plasma proteins in COVID-19 plasma compared to healthy controls. Proteomics analysis showed that levels of redox active proteins including hemoglobulin were elevated in COVID-19 plasma. Molecular modeling concurred with potential interactions between iron binding proteins and SARS CoV-2 surface proteins. Overall, increased levels of redox active metals and protein oxidation indicate that oxidative stress-induced protein oxidation in COVID-19 may be a consequence of the interactions of SARS-CoV-2 proteins with host cell metal binding proteins resulting in altered cellular homeostasis.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Cobre , Estrés Oxidativo , Metales/metabolismo , Oxidación-Reducción
9.
J Biol Inorg Chem ; 28(1): 85-100, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478265

RESUMEN

Tristetraprolin (TTP) is a nonclassical CCCH zinc finger (ZF) that plays a crucial role in regulating inflammation. TTP regulates cytokine mRNAs by specific binding of its two conserved ZF domains (CysX8CysX5CysX3His) to adenylate-uridylate-rich sequences (AREs) at the 3'-untranslated region, leading to degradation of the RNA. Dysregulation of TTP in animal models has demonstrated several cytokine-related syndromes, including chronic inflammation and autoimmune disorders. Exposure to Pb(II), a prevalent environmental toxin, is known to contribute to similar pathologies, in part by disruption of and/or competition with cysteine-rich metalloproteins. TTP's role during stress as a ubiquitous translational regulator of cell signaling (and dysfunction), which may underpin various phenotypes of Pb(II) toxicity, highlights the importance of understanding the interaction between TTP and Pb(II). The impact of Pb(II) binding on TTP's fold and RNA-binding function was analyzed via UV-Vis spectroscopy, circular dichroism, X-ray absorption spectroscopy, nuclear magnetic resonance spectroscopy, and fluorescence anisotropy. A construct containing the two ZF domains of TTP (TTP-2D) bound to Pb(II) with nanomolar affinity and exhibited a different geometry and fold in comparison to Zn2-TTP-2D. Despite the altered secondary structure, Pb(II)-substituted TTP-2D bound a canonical ARE sequence more selectively than Zn2-TTP-2D. Taken together, these data suggest that Pb(II) may interfere with proper TTP regulation and hinder the cell's ability to respond to inflammation.


Asunto(s)
Plomo , Tristetraprolina , Animales , Tristetraprolina/genética , Tristetraprolina/química , Tristetraprolina/metabolismo , Dedos de Zinc , ARN , Citocinas , Inflamación
10.
J Inorg Biochem ; 230: 111756, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247854

RESUMEN

Metal ions are commonly found as protein co-factors in biology, and it is estimated that over a quarter of all proteins require a metal cofactor. The distribution and utilization of metals in biology has changed over time. As the earth evolved, the atmosphere became increasingly oxygen rich which affected the bioavailability of certain metals such as iron, which in the oxidized ferric form is significantly less soluble than its reduced ferrous counterpart. Additionally, proteins that utilize metal cofactors for structural purposes grew in abundance, necessitating the use of metal co-factors that are not redox active, such as zinc. One common class of Zn co-factored proteins are zinc finger proteins (ZFs). ZFs bind zinc utilizing cysteine and histidine ligands to promote structure and function. Bioinformatics has annotated 5% of the human genome as ZFs; however, many of these proteins have not been studied empirically. In recent years, examples of annotated ZFs that instead harbor Fe-S clusters have been reported. In this review we highlight four examples of mis-annotated ZFs: mitoNEET, CPSF30, nsp12, and Fep1 and describe methods that can be utilized to differentiate the metal-cofactor.


Asunto(s)
Hierro , Zinc , Sitios de Unión , Humanos , Hierro/química , Metales , Zinc/química , Dedos de Zinc
11.
J Forensic Sci ; 67(3): 1274-1279, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35023580

RESUMEN

Forensic assessment employs an array of methods to identify human remains. Radiologic examinations with panoramic radiographs, computed tomography scans, Waters view, and nuclear magnetic resonance imaging may offer evidentiary clues in challenging cases, such as mass disasters. In these cases, alternative forensic tools are used to narrow lists of target victims using their biological features. This study aims to I) report on the unusual radiographic aspect of chemicals used for hair dyeing, and II) discuss the potential forensic application of this finding for human identification. The case depicts an asymptomatic 14-years-old female who presented for orthodontic therapy. During radiographic examination on a lateral cephalogram, numerous thin radiopaque streaks were visible, extending to the posterior neck between the occipital region of the skull base and vertebra C6. Clinical investigations revealed that these were artifactual hair images (possibly documented for the first time in the scientific literature). Inductively coupled plasma mass spectrometry (ICP-MS) analysis of the patient's scalp hair was performed for 10 heavy metals, including zinc, copper, iron, chromium, nickel, cadmium, tin, lead, antimony, and bismuth. Eight of these metals were detected at normal levels, ranging from 160 parts per million (ppm) for zinc to less than 1 ppm for nickel, cadmium, tin, lead, and antimony. Conversely, slightly elevated levels of chromium at 0.41 ppm and bismuth at 0.025 ppm were found in the hair sample. The distinctive radiographic presentation of artifactual hair images combined with the chemical properties of hair exposed to dye products may provide useful traces for human identification, especially in mass disasters.


Asunto(s)
Antimonio , Cadmio , Adolescente , Antimonio/análisis , Bismuto/análisis , Cadmio/análisis , Cromo/análisis , Cobre/análisis , Femenino , Cabello/química , Humanos , Níquel/análisis , Estaño/análisis , Zinc
12.
Eur J Inorg Chem ; 2021(37): 3795-3805, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34867080

RESUMEN

ZF proteins are ubiquitous eukaryotic proteins that play important roles in gene regulation. ZFs contain small domains made up of a combination of four cysteine and histidine residues, and are classified based up on the identity of these residues and their spacing. One emerging class of ZFs are the Cys3His (or CCCH) class of ZFs. These ZFs play key roles in regulating RNA. In this minireview, an overview of the CCCH class of ZFs, with a focus on tristetraprolin (TTP) is provided. TTP regulates inflammation by controlling cytokine mRNAs, and there is an interest in modulating TTP activity to control inflammation. Two methods to control TTP activity are to target with exogenous metals (a 'metals in medicine' approach) or to target with endogenous signaling molecules. Work that has been done to target TTP with Fe, Cu, Cd and Au as well as with H2S is reviewed. This includes attention to new methods that have been developed to monitor metal exchange with the spectroscopically silent ZnII including native electro-spray ionization mass spectrometry (ESI-MS), spin-filter inductively coupled plasma mass spectrometry (ICP-MS) and cryo-electro-spray mass spectrometry (CSI-MS); along with fluorescence anisotropy (FA) to follow RNA binding.

13.
Inorg Chem ; 60(11): 7697-7707, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33999622

RESUMEN

Tristetraprolin (TTP) is a nonclassical CCCH zinc finger protein that regulates inflammation. TTP targets AU-rich RNA sequences of cytokine mRNAs forming a TTP/mRNA complex. This complex is then degraded, switching off the inflammatory response. Cadmium, a known carcinogen, triggers proinflammatory effects, and there is evidence that Cd increases TTP expression in cells, suggesting that Zn-TTP may be a target for cadmium toxicity. We sought to determine whether Cd exchanges with Zn in the TTP active site and measure the effect of RNA binding on this exchange. A construct of TTP that contains the two CCCH domains (TTP-2D) was employed to investigate these interactions. A spin-filter ICP-MS experiment to quantify the metal that is bound to the ZF after metal exchange was performed, and it was determined that Cd exchanges with Zn in Zn2-TTP-2D and that Zn exchanges with Cd in Cd2-TTP-2D. A native ESI-MS experiment to identify the metal-ZF complexes formed after metal exchange was performed, and M-TTP-2D complexes with singular and double metal exchange were observed. Metal exchange was measured in both the absence and presence of TTP's partner RNA, with retention of RNA binding. These data show that Cd can exchange with Zn in TTP without affecting function.


Asunto(s)
Cadmio/química , Tristetraprolina/química , Zinc/química , Humanos , ARN/química , Tristetraprolina/genética , Tristetraprolina/aislamiento & purificación , Dedos de Zinc
15.
ACS Cent Sci ; 7(1): 200-209, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33532579

RESUMEN

Aerosols and droplets from expiratory events play an integral role in transmitting pathogens such as SARS-CoV-2 from an infected individual to a susceptible host. However, there remain significant uncertainties in our understanding of the aerosol droplet microphysics occurring during drying and sedimentation and the effect on the sedimentation outcomes. Here, we apply a new treatment for the microphysical behavior of respiratory fluid droplets to a droplet evaporation/sedimentation model and assess the impact on sedimentation distance, time scale, and particle phase. Above a 100 µm initial diameter, the sedimentation outcome for a respiratory droplet is insensitive to composition and ambient conditions. Below 100 µm, and particularly below 80 µm, the increased settling time allows the exact nature of the evaporation process to play a significant role in influencing the sedimentation outcome. For this size range, an incorrect treatment of the droplet composition, or imprecise use of RH or temperature, can lead to large discrepancies in sedimentation distance (with representative values >1 m, >2 m, and >2 m, respectively). Additionally, a respiratory droplet is likely to undergo a phase change prior to sedimenting if initially <100 µm in diameter, provided that the RH is below the measured phase change RH. Calculations of the potential exposure versus distance from the infected source show that the volume fraction of the initial respiratory droplet distribution, in this size range, which remains elevated above 1 m decreases from 1 at 1 m to 0.125 at 2 m.

16.
Mol Pharm ; 18(4): 1544-1557, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621099

RESUMEN

Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.


Asunto(s)
Medicamentos Genéricos/química , Compuestos Férricos/química , Nanopartículas/química , Anemia Ferropénica/tratamiento farmacológico , Química Farmacéutica , Cromatografía en Gel , Medicamentos Genéricos/administración & dosificación , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/normas , Dispersión Dinámica de Luz , Estudios de Equivalencia como Asunto , Compuestos Férricos/administración & dosificación , Compuestos Férricos/farmacocinética , Compuestos Férricos/normas , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/normas , Control de Calidad , Ultracentrifugación
17.
Biochemistry ; 60(10): 780-790, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33615774

RESUMEN

Cleavage and polyadenylation specificity factor 30 (CPSF30) is a zinc finger protein that regulates pre-mRNA processing. CPSF30 contains five CCCH domains and one CCHC domain and recognizes two conserved 3' pre-mRNA sequences: an AU hexamer and a U-rich motif. AU hexamer motifs are common in pre-mRNAs and are typically defined as AAUAAA. Variations within the AAUAAA hexamer occur in certain pre-mRNAs and can affect polyadenylation efficiency or be linked to diseases. The effects of disease-related variations on CPSF30/pre-mRNA binding were determined using a construct of CPSF30 that contains just the five CCCH domains (CPSF30-5F). Bioinformatics was utilized to identify the variability within the AU hexamer sequence in pre-mRNAs. The effects of this sequence variability on CPSF30-5F/RNA binding affinities were measured. Bases at positions 1, 2, 4, and 5 within the AU hexamer were found to be important for RNA binding. Bioinformatics revealed that the three bases flanking the AU hexamer at the 5' and 3' ends are twice as likely to be adenine or uracil as guanine and cytosine. The presence of A and U residues in these flanking regions was determined to promote higher-affinity CPSF30-5F/RNA binding than G and C residues. The addition of the zinc knuckle domain to CPSF30-5F (CPSF30-FL) restored binding to AU hexamer variants. This restoration of binding is connected to the presence of a U-rich sequence within the pre-mRNA to which the zinc knuckle binds. A mechanism of differential RNA binding by CPSF30, modulated by accessibility of the two RNA binding sites, is proposed.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poli U/metabolismo , Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Bovinos , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Unión Proteica , Precursores del ARN/genética , ARN Mensajero/química , ARN Mensajero/genética , Dedos de Zinc
18.
J Nurs Adm ; 51(3): 162-167, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570374

RESUMEN

A focused effort is needed to capture the utility and usability of the electronic health record for providing usable and reusable data while reducing documentation burden. A collaborative effort of nurse leaders and experts was able to generate national consensus recommendations on documentation elements related to admission history. The process used in this effort is summarized in a framework that can be used by other groups to develop content that reduces documentation burden while maximizing the creation of usable and reusable data.


Asunto(s)
Manejo de Datos/normas , Documentación/normas , Registros Electrónicos de Salud/normas , Colaboración Intersectorial , Objetivos Organizacionales , Guías de Práctica Clínica como Asunto/normas , Humanos , Estados Unidos
19.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32897876

RESUMEN

ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic SNPs identified in GWAS; A391T has associations with an increased risk of schizophrenia, obesity, Crohn's disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knockin (KI) to generate a mouse model of ZIP8 A391T (Zip8 393T-KI mice). Recapitulating the SNP association with blood Mn, blood Mn was reduced in Zip8 393T-KI mice. There was restricted abnormal tissue Mn homeostasis, with decreases in liver and kidney Mn and a reciprocal increase in biliary Mn, providing in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemically induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of patients with Crohn's disease. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in complex human disease.


Asunto(s)
Proteínas de Transporte de Catión/genética , Enfermedad de Crohn/genética , Riñón/metabolismo , Manganeso/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Sulfato de Dextran/toxicidad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Homeostasis/genética , Humanos , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Manganeso/sangre , Ratones , Polimorfismo de Nucleótido Simple/genética
20.
Orphanet J Rare Dis ; 15(1): 223, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854719

RESUMEN

BACKGROUND: Early blindness secondary to incurable retinal detachment is one of the main complications of incontinentia pigmenti (IP). The efficiency of ophthalmological management for preventing such evolution has not been proven. The objective of this retrospective study was to report a screening and treatment strategy of the vascular retinopathy in newborns and infants with IP. RESULTS: All files of patients diagnosed with IP within the two first months of life in a single tertiary referral center, between 2010 and 2015, were retrospectively included. The minimum follow-up duration was three years. Patients had undergone systematic indirect ophthalmoscopy examination, looking for signs of peripheric retinal vasculopathy, according to a standardized schedule: at diagnosis, at age 1, 2, 3, 6, 9, 12, 18 and 24 months, and then once a year. Urgent laser therapy was performed under anesthesia in case of signs of retinal ischemia. Nineteen children files (17 girls) were studied. Median age at IP diagnosis was 1 day [0-44]; median age at first retinal evaluation was 25 days. Retinal manifestations occurred in 7 patients (n = 10/38 eyes, 26.3%); they were diagnosed at median age 19 days [3-59]. These patients underwent one or two ablative session per eye (mean 1.7, median 2), under general anaesthesia. No retinal detachment or fold occurred during the follow-up (median 6 years [3-9.8]). CONCLUSION: Ocular screening should be performed in all cases of IP as soon as possible after diagnosis. A strict ophthalmological monitoring and prophylactic treatment of retinal vasculopathy can efficiently prevent the early blinding complications of the disease.


Asunto(s)
Incontinencia Pigmentaria , Desprendimiento de Retina , Enfermedades de la Retina , Adulto , Niño , Preescolar , Femenino , Angiografía con Fluoresceína , Humanos , Incontinencia Pigmentaria/complicaciones , Lactante , Recién Nacido , Desprendimiento de Retina/etiología , Enfermedades de la Retina/etiología , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA