Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
J Chem Phys ; 160(8)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38415833

We theoretically investigate homogeneous crystal nucleation in a solution containing a solute and a volatile solvent. The solvent evaporates from the solution, thereby continuously increasing the concentration of the solute. We view it as an idealized model for the far-out-of-equilibrium conditions present during the liquid-state manufacturing of organic electronic devices. Our model is based on classical nucleation theory, taking the solvent to be a source of the transient conditions in which the solute drops out of the solution. Other than that, the solvent is not directly involved in the nucleation process itself. We approximately solve the kinetic master equations using a combination of Laplace transforms and singular perturbation theory, providing an analytical expression for the nucleation flux. Our results predict that (i) the nucleation flux lags slightly behind a commonly used quasi-steady-state approximation. This effect is governed by two counteracting effects originating from solvent evaporation: while a faster evaporation rate results in an increasingly larger influence of the lag time on the nucleation flux, this lag time itself is found to decrease with increasing evaporation rate. Moreover, we find that (ii) the nucleation flux and the quasi-steady-state nucleation flux are never identical, except trivially in the stationary limit, and (iii) the initial induction period of the nucleation flux, which we characterize as a generalized induction time, decreases weakly with the evaporation rate. This indicates that the relevant time scale for nucleation also decreases with an increasing evaporation rate. Our analytical theory compares favorably with results from a numerical evaluation of the governing kinetic equations.

2.
Nat Mater ; 22(9): 1114-1120, 2023 Sep.
Article En | MEDLINE | ID: mdl-37386064

A common obstacle of many organic semiconductors is that they show highly unipolar charge transport. This unipolarity is caused by trapping of either electrons or holes by extrinsic impurities, such as water or oxygen. For devices that benefit from balanced transport, such as organic light-emitting diodes, organic solar cells and organic ambipolar transistors, the energy levels of the organic semiconductors are ideally situated within an energetic window with a width of 2.5 eV where charge trapping is strongly suppressed. However, for semiconductors with a band gap larger than this window, as used in blue-emitting organic light-emitting diodes, the removal or disabling of charge traps poses a longstanding challenge. Here we demonstrate a molecular strategy where the highest occupied molecular orbital and lowest unoccupied molecular orbital are spatially separated on different parts of the molecules. By tuning their stacking by modification of the chemical structure, the lowest unoccupied molecular orbitals can be spatially protected from impurities that cause electron trapping, increasing the electron current by orders of magnitude. In this way, the trap-free window can be substantially broadened, opening a path towards large band gap organic semiconductors with balanced and trap-free transport.

3.
Adv Mater ; 35(26): e2300574, 2023 Jun.
Article En | MEDLINE | ID: mdl-36914566

Efficient organic light-emitting diodes (OLEDs) commonly comprise a multilayer stack including charge-transport and charge- and exciton-blocking layers, to confine charge recombination to the emissive layer. Here, a highly simplified single-layer blue-emitting OLED is demonstrated based on thermally activated delayed fluorescence with the emitting layer simply sandwiched between ohmic contacts consisting of a polymeric conducting anode and a metal cathode. The single-layer OLED exhibits an external quantum efficiency of 27.7% with minor roll-off at high brightness. The internal quantum efficiency approaches unity, demonstrating that highly simplified single-layer OLEDs without confinement layers can achieve state-of-the-art performance, while greatly reducing the complexity of the design, fabrication, and device analysis.

4.
Adv Sci (Weinh) ; 9(19): e2200056, 2022 Jul.
Article En | MEDLINE | ID: mdl-35253396

Excellent performance has been reported for organic light-emitting diodes (OLEDs) based on small molecule emitters that exhibit thermally activated delayed fluorescence. However, the necessary vacuum processing makes the fabrication of large-area devices based on these emitters cumbersome and expensive. Here, the authors present high performance OLEDs, based on novel, TADF polymers that can be readily processed from a solution. These polymers are based on the acridine-benzophenone donor-acceptor motif as main-chain TADF chromophores, linked by various conjugated and non-conjugated spacer moieties. The authors' extensive spectroscopic and electronic analysis shows that in particular in case of alkyl spacers, the properties and performance of the monomeric TADF chromophores are virtually left unaffected by the polymerization. They present efficient solution-processed OLEDs based on these TADF polymers, diluted in oligostyrene as a host. The devices based on the alkyl spacer-based TADF polymers exhibit external quantum efficiencies (EQEs) ≈12%, without any outcoupling-enhancing measures. What's more, the EQE of these devices does not drop substantially upon diluting the polymer down to only ten weight percent of active material. In contrast, the EQE of devices based on the monomeric chromophore show significant losses upon dilution due to loss of charge percolation.

5.
Biomacromolecules ; 23(1): 349-364, 2022 01 10.
Article En | MEDLINE | ID: mdl-34866377

Condensate formation of biopolymer solutions, prominently those of various intrinsically disordered proteins (IDPs), is often driven by "sticky" interactions between associating residues, multivalently present along the polymer backbone. Using a ternary mean-field "stickers-and-spacers" model, we demonstrate that if sticker association is of the order of a few times the thermal energy, a delicate balance between specific binding and nonspecific polymer-solvent interactions gives rise to a particularly rich ternary phase behavior under physiological circumstances. For a generic system represented by a solution comprising multiassociative scaffold and client polymers, the difference in solvent compatibility between the polymers modulates the nature of isothermal liquid-liquid phase separation (LLPS) between associative and segregative. The calculations reveal regimes of dualistic phase behavior, where both types of LLPS occur within the same phase diagram, either associated with the presence of multiple miscibility gaps or a flip in the slope of the tie-lines belonging to a single coexistence region.


Intrinsically Disordered Proteins , Polymers , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Solvents
6.
Adv Sci (Weinh) ; 9(4): e2104247, 2022 02.
Article En | MEDLINE | ID: mdl-34862761

Formation of membrane-less organelles by self-assembly of disordered proteins can be triggered by external stimuli such as pH, salt, or temperature. These organelles, called biomolecular condensates, have traditionally been classified as liquids, gels, or solids with limited subclasses. Here, the authors show that a thermal trigger can lead to formation of at least two distinct liquid condensed phases of the fused in sarcoma low complexity (FUS LC) domain. Forming FUS LC condensates directly at low temperature leads to formation of metastable, kinetically trapped condensates that show arrested coalescence, escape from which to untrapped condensates can be achieved via thermal annealing. Using experimental and computational approaches, the authors find that molecular structure of interfacial FUS LC in kinetically trapped condensates is distinct (more ß-sheet like) compared to untrapped FUS LC condensates. Moreover, molecular motion within kinetically trapped condensates is substantially slower compared to that in untrapped condensates thereby demonstrating two unique liquid FUS condensates. Controlling condensate thermodynamic state, stability, and structure with a simple thermal switch may contribute to pathological protein aggregate stability and provides a facile method to trigger condensate mixing for biotechnology applications.


Biomolecular Condensates/metabolism , RNA-Binding Protein FUS/metabolism , Biochemical Phenomena , Biomolecular Condensates/chemistry , Kinetics , Protein Aggregates , Protein Stability , RNA-Binding Protein FUS/chemistry , Thermodynamics
8.
Nat Mater ; 20(1): 68-75, 2021 Jan.
Article En | MEDLINE | ID: mdl-32778811

Meniscus-guided coating methods, such as zone casting, dip coating and solution shearing, are scalable laboratory models for large-area solution coating of functional materials for thin-film electronics. Unfortunately, the general lack of understanding of how the coating parameters affect the dry-film morphology upholds trial-and-error experimentation and delays lab-to-fab translation. We present herein a model that predicts dry-film morphologies produced by meniscus-guided coating of a crystallizing solute. Our model reveals how the interplay between coating velocity and evaporation rate determines the crystalline domain size, shape anisotropy and regularity. If coating is fast, evaporation drives the system quickly past supersaturation, giving isotropic domain structures. If coating is slow, depletion due to crystallization stretches domains in the coating direction. The predicted morphologies have been experimentally confirmed by zone-casting experiments of the organic semiconductor 4-tolyl-bithiophenyl-diketopyrrolopyrrole. Although here we considered a small molecular solute, our model can be applied broadly to polymers and organic-inorganic hybrids such as perovskites.

11.
J Phys Chem B ; 124(36): 7765-7778, 2020 09 10.
Article En | MEDLINE | ID: mdl-32805110

Reaction intermediates in the green-to-red photoconversion of the photochromic fluorescent protein EosFP have been observed using high-intensity continuous blue illumination. An intermediate was identified through light-induced accumulation that continues to convert the green form in subsequent darkness, putatively containing a tyrosyl radical, albeit with anomalously shifted features in both the electronic and FTIR spectra. Lowering the pH to 5.5 significantly delays the decay of this tyrosyl intermediate, which is accompanied by Stark-shifted features in the electronic spectra of reactants and products. Vibrational mode assignments for the high-frequency and fingerprint FTIR spectral regions of the reaction intermediates support a proposed sequence of events where the newly formed Cα═Cß ethylenic bond precedes modifications on the His-62 imidazole ring and confirms a C═O(NH2) product group on Phe-61. We propose a reaction mechanism that involves tyrosyl generation via singlet excited-state-mediated oxidation which subsequently triggers the covalent reactions by oxidation of the green chromophore.

12.
Macromolecules ; 53(2): 523-538, 2020 Jan 28.
Article En | MEDLINE | ID: mdl-32655190

Recently, disordered blends of semiconducting and insulating polymers have been used to prepare light-emitting diodes with increased luminous efficiency. Because the thermodynamic stability of the disordered phase in blends is limited, equivalent diblock copolymers (BCPs) could be an alternative. However, the choice between disordered blends and BCPs requires understanding structural differences and their effect on charge carrier transport. Using a hybrid mesoscopic model, we simulate blends and equivalent BCPs of two representative semiconducting and insulating polymers: poly(p-phenylene vinylene) (PPV) and polyacrylate. The immiscibility is varied to mimic annealing at different temperatures. We find stable or metastable disordered morphologies until we reach the mean-field (MF) spinodal. Disordered morphologies are heterogeneous because of thermal fluctuations and local segregation. Near the MF spinodal, segregation is stronger in BCPs than in the blends, even though the immiscibility, normalized by the MF spinodal, is the same. We link the spatial distribution of PPV with electric conductance. We predict that the immiscibility (temperature at which the layer is annealed) affects electrical percolation much stronger in BCPs than in blends. Differences in the local structure and percolation between blends and BCPs are enhanced at a high insulator content.

13.
Adv Sci (Weinh) ; 7(13): 2000517, 2020 Jul.
Article En | MEDLINE | ID: mdl-32670767

Hierarchically porous piezoelectric polymer nanofibers are prepared through precise control over the thermodynamics and kinetics of liquid-liquid phase separation of nonsolvent (water) in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) solution. Hierarchy is achieved by fabricating fibers with pores only on the surface of the fiber, or pores only inside the fiber with a closed surface, or pores that are homogeneously distributed in both the volume and surface of the nanofiber. For the fabrication of hierarchically porous nanofibers, guidelines are formulated. A detailed experimental and simulation study of the influence of different porosities on the electrical output of piezoelectric nanogenerators is presented. It is shown that bulk porosity significantly increases the power output of the comprising nanogenerator, whereas surface porosity deteriorates electrical performance. Finite element method simulations attribute the better performance to increased volumetric strain in bulk porous nanofibers.

14.
ACS Appl Mater Interfaces ; 7(29): 15968-77, 2015 Jul 29.
Article En | MEDLINE | ID: mdl-26147606

Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.

15.
Phys Chem Chem Phys ; 17(33): 21501-6, 2015 Sep 07.
Article En | MEDLINE | ID: mdl-26219635

The operational characteristics of organic solar cells manufactured with large area processing methods suffers from the occurrence of short-circuits due to defects in the photoactive thin film stack. In this work we study the effect of a shunt resistance on an organic solar cell and demonstrate that device performance is not affected negatively as long as the shunt resistance is higher than approximately 1000 Ohm. By studying charge transport across PEDOT: PSS-lithium fluoride/aluminum (LiF/Al) shunting junctions we show that this prerequisite is already met by applying a sufficiently thick (>1.5 nm) LiF layer. We demonstrate that this remarkable shunt-resilience stems from the formation of a significant charge transport barrier at the PEDOT: PSS-LiF/Al interface. We validate our predictions by fabricating devices with deliberately severed photoactive layers and find an excellent agreement between the calculated and experimental current-voltage characteristics.

16.
J Phys Chem B ; 117(37): 10929-35, 2013 Sep 19.
Article En | MEDLINE | ID: mdl-23952678

The effect of hypochlorite treatment on the layer thickness and conductivity of a state-of-the-art high conducting poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is investigated as a function of exposure time and hypochlorite concentration. Because of overoxidation by the hypochlorite the PEDOT:PSS conductivity is decreased by 10 orders of magnitude. Comparison of thickness and conductivity as a function of time shows that a residual insulating layer remains on the substrate upon treatment. Going from a low (<0.01%) to a high (>0.1%) hypochlorite concentration the interaction between PEDOT:PSS and hypochlorite changes from reaction- to diffusion limited. The decrease in conductivity can be interpreted in terms of the interruption of percolating conductive pathways by the reaction between PEDOT and hypochlorite.

17.
J Am Chem Soc ; 135(32): 12057-67, 2013 Aug 14.
Article En | MEDLINE | ID: mdl-23863101

The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.

18.
Chemphyschem ; 12(2): 342-8, 2011 Feb 07.
Article En | MEDLINE | ID: mdl-21275026

This paper describes the first example of the application of a combination of the Flory-Huggins and Cahn-Hilliard theories to model and simulate microstructure evolution in solution-processed functional blend layers of organic semiconductors, as used in organic electronics devices. Specifically, the work considers phase separation of the active blend components of organic transistors based on triisopropylsilylpentacene (TIPS-pentacene) and poly(α-methylstyrene) (PαMS). By calculation and estimation of relevant physical parameters, it is shown that the vertically phase-separated structure observed in as-cast blend layers containing PαMS of a sufficiently high molecular weight (of the order of 10(2) kDa) evolves via surface-directed spinodal decomposition. The surface-directed effect can already be triggered by small differences in substrate- and/or air-interface interaction energies of the separating phases. During phase separation, which commences at the interfaces, bulk features of the TIPS-enriched phase formed by thermal noise collapse to give the experimentally observed trilayer structure of TIPS-PαMS-TIPS. The reported near absence of solution-state phase separation of as-cast blend layers containing a low molecular weight PαMS (of the order of 1 kDa) is also reproduced.

19.
Chem Commun (Camb) ; (1): 56-7, 2004 Jan 07.
Article En | MEDLINE | ID: mdl-14737330

PPV-based polyrotaxanes have been prepared by coupling vinyl boronic acids to aryl iodides in the presence of cyclodextrins, and the crystal structure of a [2]rotaxane of this type has been determined.

20.
Chemistry ; 9(24): 6167-76, 2003 Dec 15.
Article En | MEDLINE | ID: mdl-14679528

A series of conjugated polyrotaxane insulated molecular wires are synthesised by aqueous Suzuki polymerisation, using hydrophobic binding to promote threading of the cyclodextrin units. These polyrotaxanes have conjugated polymer cores based on poly(para-phenylene), polyfluorene, and poly(diphenylene-vinylene), threaded through 0.9-1.6 cyclodextrins per repeat unit. Bulky naphthalene-3,6-disulfonate endgroups prevent the macrocycles from slipping off the conjugated polymer chains. Dialysis experiments show that the cyclodextrins become unthreaded only if smaller stoppers are used. MALDI TOF mass spectra detect oligomers with up to ten threaded cyclodextrins, and reveal the presence of some defects that result for oxidative homo-coupling of boronic acids. Weight-average molecular weights were determined by analytical ultracentrifugation, demonstrating that step-growth polymerisation is efficient enough to achieve degrees of polymerisation up to approximately 20 repeat units (84 para-phenylenes). The fluorescence spectra of these polyrotaxanes indicate that the presence of the threaded cyclodextrin macrocycles reduces the flexibility of the conjugated polymer pi-systems. Both the solution and the solid-state photoluminescence quantum yields are enhanced upon threading of the conjugated polyaromatic cores through alpha- or beta-cyclodextrins, and the emission spectra of the polyrotaxanes are blue-shifted compared to the corresponding unthreaded polymers. The greater weight of the 0-0 transition in the emission spectra, as well as the smaller Stokes shift, indicate that the polyrotaxanes are more rigid than the unthreaded polymers.


Rotaxanes/chemical synthesis , Cyclodextrins/chemistry , Fluorenes/chemistry , Light , Luminescent Measurements , Macromolecular Substances , Models, Molecular , Molecular Structure , Molecular Weight , Nanotechnology , Polycyclic Aromatic Hydrocarbons/chemistry , Polyvinyls/chemistry , Spectrometry, Fluorescence , Spectrophotometry
...