Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Acta Radiol ; : 2841851241240446, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630492

BACKGROUND: Dynamic myocardial computed tomography perfusion (CTP) is a novel imaging technique that increases the applicability of CT for cardiac imaging; however, the scanning requires a substantial radiation dose. PURPOSE: To investigate the feasibility of dose reduction in dynamic CTP by comparing all-heartbeat acquisitions to periodic skipping of heartbeats. MATERIAL AND METHODS: We retrieved imaging data of 38 dynamic CTP patients and created new datasets with every fourth, third or second beat (Skip1:4, Skip1:3, Skip1:2, respectively) removed. Seven observers evaluated the resulting images and perfusion maps for perfusion deficits. The mean blood flow (MBF) in each of the 16 myocardial segments was compared per skipped-beat level, normalized by the respective MBF for the full dose, and averaged across patients. The number of segments/cases whose MBF was <1.0 mL/g/min were counted. RESULTS: Out of 608 segments in 38 cases, the total additional number of false-negative (FN) segments over those present in the full-dose acquisitions and the number of additional false-positive cases were shown as acquisition (segment [%], case): Skip1:4: 7 (1.2%, 1); Skip1:3: 12 (2%, 3), and Skip1:2: 5 (0.8%, 2). The variability in quantitative MBF analysis in the repeated analysis for the reference condition resulted in 8 (1.3%) additional FN segments. The normalized results show a comparable MBF across all segments and patients, with relative mean MBFs as 1.02 ± 0.16, 1.03 ± 0.25, and 1.06 ± 0.30 for the Skip1:4, Skip1:3, and Skip1:2 protocols, respectively. CONCLUSION: Skipping every second beat acquisition during dynamic myocardial CTP appears feasible and may result in a radiation dose reduction of 50%. Diagnostic performance does not decrease after removing 50% of time points in dynamic sequence.

2.
Med Phys ; 51(5): 3322-3333, 2024 May.
Article En | MEDLINE | ID: mdl-38597897

BACKGROUND: The development of a new imaging modality, such as 4D dynamic contrast-enhanced dedicated breast CT (4D DCE-bCT), requires optimization of the acquisition technique, particularly within the 2D contrast-enhanced imaging modality. Given the extensive parameter space, cascade-systems analysis is commonly used for such optimization. PURPOSE: To implement and validate a parallel-cascaded model for bCT, focusing on optimizing and characterizing system performance in the projection domain to enhance the quality of input data for image reconstruction. METHODS: A parallel-cascaded system model of a state-of-the-art bCT system was developed and model predictions of the presampled modulation transfer function (MTF) and the normalized noise power spectrum (NNPS) were compared with empirical data collected in the projection domain. Validation was performed using the default settings of 49 kV with 1.5 mm aluminum filter and at 65 kV and 0.257 mm copper filter. A 10 mm aluminum plate was added to replicate the breast attenuation. Air kerma at the isocenter was measured at different tube current levels. Discrepancies between the measured projection domain metrics and model-predicted values were quantified using percentage error and coefficient of variation (CoV) for MTF and NNPS, respectively. The optimal filtration was for a 5 mm iodine disk detection task at 49, 55, 60, and 65 kV. The detectability index was calculated for the default aluminum filtration and for copper thicknesses ranging from 0.05 to 0.4 mm. RESULTS: At 49 kV, MTF errors were +5.1% and -5.1% at 1 and 2 cycles/mm, respectively; NNPS CoV was 5.3% (min = 3.7%; max = 8.5%). At 65 kV, MTF errors were -0.8% and -3.2%; NNPS CoV was 13.1% (min = 11.4%; max = 16.9%). Air kerma output was linear, with 11.67 µGy/mA (R2 = 0.993) and 19.14 µGy/mA (R2 = 0.996) at 49 and 65 kV, respectively. For iodine detection, a 0.25 mm-thick copper filter at 65 kV was found optimal, outperforming the default technique by 90%. CONCLUSION: The model accurately predicts bCT system performance, specifically in the projection domain, under varied imaging conditions, potentially contributing to the enhancement of 2D contrast-enhanced imaging in 4D DCE-bCT.


Breast , Contrast Media , Contrast Media/chemistry , Breast/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Phantoms, Imaging , Humans , Mammography/methods , Mammography/instrumentation , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio
3.
Med Phys ; 51(3): 2081-2095, 2024 Mar.
Article En | MEDLINE | ID: mdl-37656009

BACKGROUND: Simulated computed tomography (CT) images allow for knowledge of the underlying ground truth and for easy variation of imaging conditions, making them ideal for testing and optimization of new applications or algorithms. However, simulating all processes that affect CT images can result in simulations that are demanding in terms of processing time and computer memory. Therefore, it is of interest to determine how much the simulation can be simplified while still achieving realistic results. PURPOSE: To develop a scanner-specific CT simulation using physics-based simulations for the position-dependent effects and shift-invariant image corruption methods for the detector effects. And to investigate the impact on image realism of introducing simplifications in the simulation process that lead to faster and less memory-demanding simulations. METHODS: To make the simulator realistic and scanner-specific, the spatial resolution and noise characteristics, and the exposure-to-detector output relationship of a clinical CT system were determined. The simulator includes a finite focal spot size, raytracing of the digital phantom, gantry rotation during projection acquisition, and finite detector element size. Previously published spectral models were used to model the spectrum for the given tube voltage. The integrated energy at each element of the detector was calculated using the Beer-Lambert law. The resulting angular projections were subsequently corrupted by the detector modulation transfer function (MTF), and by addition of noise according to the noise power spectrum (NPS) and signal mean-variance relationship, which were measured for different scanner settings. The simulated sinograms were reconstructed on the clinical CT system and compared to real CT images in terms of CT numbers, noise magnitude using the standard deviation, noise frequency content using the NPS, and spatial resolution using the MTF throughout the field of view (FOV). The CT numbers were validated using a multi-energy CT phantom, the noise magnitude and frequency were validated with a water phantom, and the spatial resolution was validated with a tungsten wire. These metrics were compared at multiple scanner settings, and locations in the FOV. Once validated, the simulation was simplified by reducing the level of subsampling of the focal spot area, rotation and of detector pixel size, and the changes in MTFs were analyzed. RESULTS: The average relative errors for spatial resolution within and across image slices, noise magnitude, and noise frequency content within and across slices were 3.4%, 3.3%, 4.9%, 3.9%, and 6.2%, respectively. The average absolute difference in CT numbers was 10.2 HU and the maximum was 22.5 HU. The simulation simplification showed that all subsampling can be avoided, except for angular, while the error in frequency at 10% MTF would be maximum 16.3%. CONCLUSION: The simulation of a scanner-specific CT allows for the generation of realistic CT images by combining physics-based simulations for the position-dependent effects and image-corruption methods for the shift-invariant ones. Together with the available ground truth of the digital phantom, it results in a useful tool to perform quantitative analysis of reconstruction or post-processing algorithms. Some simulation simplifications allow for reduced time and computer power requirements with minimal loss of realism.


Algorithms , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Computer Simulation , Phantoms, Imaging
4.
Med Phys ; 50(8): 4744-4757, 2023 Aug.
Article En | MEDLINE | ID: mdl-37394837

BACKGROUND: Digital breast tomosynthesis (DBT) has gained popularity as breast imaging modality due to its pseudo-3D reconstruction and improved accuracy compared to digital mammography. However, DBT faces challenges in image quality and quantitative accuracy due to scatter radiation. Recent advancements in deep learning (DL) have shown promise in using fast convolutional neural networks for scatter correction, achieving comparable results to Monte Carlo (MC) simulations. PURPOSE: To predict the scatter radiation signal in DBT projections within clinically-acceptable times and using only clinically-available data, such as compressed breast thickness and acquisition angle. METHODS: MC simulations to obtain scatter estimates were generated from two types of digital breast phantoms. One set consisted of 600 realistically-shaped homogeneous breast phantoms for initial DL training. The other set was composed of 80 anthropomorphic phantoms, containing realistic internal tissue texture, aimed at fine tuning the DL model for clinical applications. The MC simulations generated scatter and primary maps per projection angle for a wide-angle DBT system. Both datasets were used to train (using 7680 projections from homogeneous phantoms), validate (using 960 and 192 projections from the homogeneous and anthropomorphic phantoms, respectively), and test (using 960 and 48 projections from the homogeneous and anthropomorphic phantoms, respectively) the DL model. The DL output was compared to the corresponding MC ground truth using both quantitative and qualitative metrics, such as mean relative and mean absolute relative differences (MRD and MARD), and to previously-published scatter-to-primary (SPR) ratios for similar breast phantoms. The scatter corrected DBT reconstructions were evaluated by analyzing the obtained linear attenuation values and by visual assessment of corrected projections in a clinical dataset. The time required for training and prediction per projection, as well as the time it takes to produce scatter-corrected projection images, were also tracked. RESULTS: The quantitative comparison between DL scatter predictions and MC simulations showed a median MRD of 0.05% (interquartile range (IQR), -0.04% to 0.13%) and a median MARD of 1.32% (IQR, 0.98% to 1.85%) for homogeneous phantom projections and a median MRD of -0.21% (IQR, -0.35% to -0.07%) and a median MARD of 1.43% (IQR, 1.32% to 1.66%) for the anthropomorphic phantoms. The SPRs for different breast thicknesses and at different projection angles were within ± 15% of the previously-published ranges. The visual assessment showed good prediction capabilities of the DL model with a close match between MC and DL scatter estimates, as well as between DL-based scatter corrected and anti-scatter grid corrected cases. The scatter correction improved the accuracy of the reconstructed linear attenuation of adipose tissue, reducing the error from -16% and -11% to -2.3% and 4.4% for an anthropomorphic digital phantom and clinical case with similar breast thickness, respectively. The DL model training took 40 min and prediction of a single projection took less than 0.01 s. Generating scatter corrected images took 0.03 s per projection for clinical exams and 0.16 s for one entire projection set. CONCLUSIONS: This DL-based method for estimating the scatter signal in DBT projections is fast and accurate, paving the way for future quantitative applications.


Breast , Deep Learning , Mammography , Radiographic Image Enhancement , X-Rays , Breast/diagnostic imaging , Monte Carlo Method , Mammography/methods , Breast Neoplasms/diagnostic imaging , Phantoms, Imaging , Neural Networks, Computer , Radiographic Image Enhancement/methods , Humans , Female , Datasets as Topic
5.
Med Phys ; 50(4): 2022-2036, 2023 Apr.
Article En | MEDLINE | ID: mdl-36565012

BACKGROUND: Accurate correction of x-ray scatter in dedicated breast computed tomography (bCT) imaging may result in improved visual interpretation and is crucial to achieve quantitative accuracy during image reconstruction and analysis. PURPOSE: To develop a deep learning (DL) model to correct for x-ray scatter in bCT projection images. METHODS: A total of 115 patient scans acquired with a bCT clinical system were segmented into the major breast tissue types (skin, adipose, and fibroglandular tissue). The resulting breast phantoms were divided into training (n = 110) and internal validation cohort (n = 5). Training phantoms were augmented by a factor of four by random translation of the breast in the image field of view. Using a previously validated Monte Carlo (MC) simulation algorithm, 12 primary and scatter bCT projection images with a 30-degree step were generated from each phantom. For each projection, the thickness map and breast location in the field of view were also calculated. A U-Net based DL model was developed to estimate the scatter signal based on the total input simulated image and trained single-projection-wise, with the thickness map and breast location provided as additional inputs. The model was internally validated using MC-simulated projections and tested using an external data set of 10 phantoms derived from images acquired with a different bCT system. For this purpose, the mean relative difference (MRD) and mean absolute error (MAE) were calculated. To test for accuracy in reconstructed images, a full bCT acquisition was mimicked with MC-simulations and then assessed by calculating the MAE and the structural similarity (SSIM). Subsequently, scatter was estimated and subtracted from the bCT scans of three patients to obtain the scatter-corrected image. The scatter-corrected projections were reconstructed and compared with the uncorrected reconstructions by evaluating the correction of the cupping artifact, increase in image contrast, and contrast-to-noise ratio (CNR). RESULTS: The mean MRD and MAE across all cases (min, max) for the internal validation set were 0.04% (-1.1%, 1.3%) and 2.94% (2.7%, 3.2%), while for the external test set they were -0.64% (-1.6%, 0.2%) and 2.84% (2.3%, 3.5%), respectively. For MC-simulated reconstruction slices, the computed SSIM was 0.99 and the MAE was 0.11% (range: 0%, 0.35%) with a single outlier slice of 2.06%. For the three patient bCT reconstructed images, the correction increased the contrast by a mean of 25% (range: 20%, 30%), and reduced the cupping artifact. The mean CNR increased by 0.32 after scatter correction, which was not found to be significant (95% confidence interval: [-0.01, 0.65], p = 0.059). The time required to correct the scatter in a single bCT projection was 0.2 s on an NVIDIA GeForce GTX 1080 GPU. CONCLUSION: The developed DL model could accurately estimate scatter in bCT projection images and could enhance contrast and correct for cupping artifact in reconstructed patient images without significantly affecting the CNR. The time required for correction would allow its use in daily clinical practice, and the reported accuracy will potentially allow quantitative reconstructions.


Deep Learning , Humans , X-Rays , Tomography, X-Ray Computed/methods , Breast/diagnostic imaging , Computer Simulation , Algorithms , Phantoms, Imaging , Scattering, Radiation , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography
6.
Med Phys ; 50(5): 2928-2938, 2023 May.
Article En | MEDLINE | ID: mdl-36433824

BACKGROUND: Modelling of the 3D breast shape under compression is of interest when optimizing image processing and reconstruction algorithms for mammography and digital breast tomosynthesis (DBT). Since these imaging techniques require the mechanical compression of the breast to obtain appropriate image quality, many such algorithms make use of breast-like phantoms. However, if phantoms do not have a realistic breast shape, this can impact the validity of such algorithms. PURPOSE: To develop a point distribution model of the breast shape obtained through principal component analysis (PCA) of structured light (SL) scans from patient compressed breasts. METHODS: SL scans were acquired at our institution during routine craniocaudal-view DBT imaging of 236 patients, creating a dataset containing DBT and SL scans with matching information. Thereafter, the SL scans were cleaned, merged, simplified, and set to a regular grid across all cases. A comparison between the initial SL scans after cleaning and the gridded SL scans was performed to determine the absolute difference between them. The scans with points in a regular grid were then used for PCA. Additionally, the correspondence between SL scans and DBT scans was assessed by comparing features such as the chest-to-nipple distance (CND), the projected breast area (PBA) and the length along the chest-wall (LCW). These features were compared using a paired t-test or the Wilcoxon signed rank sum test. Thereafter, the PCA shape prediction and SL scans were evaluated by calculating the mean absolute error to determine whether the model had adequately captured the information in the dataset. The coefficients obtained from the PCA could then parameterize a given breast shape as an offset from the sample means. We also explored correlations of the PCA breast shape model parameters with certain patient characteristics: age, glandular volume, glandular density by mass, total breast volume, compressed breast thickness, compression force, nipple location, and centre of the chest-wall. RESULTS: The median value across cases for the 90th and 99th percentiles of the interpolation error between the initial SL scans after cleaning and the gridded SL scans was 0.50 and 1.16 mm, respectively. The comparison between SL and DBT scans resulted in small, but statistically significant, mean differences of 1.6 mm, 1.6 mm, and 2.2 cm2 for the LCW, CND, and PBA, respectively. The final model achieved a median mean absolute error of 0.68 mm compared to the scanned breast shapes and a perfect correlation between the first PCA coefficient and the patient breast compressed thickness, making it possible to use it to generate new model-based breast shapes with a specific breast thickness. CONCLUSION: There is a good agreement between the breast shape coverage obtained with SL scans used to construct our model and the DBT projection images, and we could therefore create a generative model based on this data that is available for download on Github.


Breast Neoplasms , Thoracic Wall , Humans , Female , Breast/diagnostic imaging , Mammography/methods , Image Processing, Computer-Assisted/methods , Nipples , Algorithms , Phantoms, Imaging , Breast Neoplasms/diagnostic imaging
7.
Med Image Anal ; 71: 102061, 2021 07.
Article En | MEDLINE | ID: mdl-33910108

The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <±3%; dose <±20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.


Breast Neoplasms , Deep Learning , Breast/diagnostic imaging , Breast Density , Breast Neoplasms/diagnostic imaging , Female , Humans , Mammography , Radiation Dosage
8.
Med Phys ; 47(10): 4906-4916, 2020 Oct.
Article En | MEDLINE | ID: mdl-32803800

PURPOSE: To develop and test the feasibility of a two-pass iterative reconstruction algorithm with material decomposition designed to obtain quantitative iodine measurements in digital breast tomosynthesis. METHODS: Contrast-enhanced mammography has shown promise as a cost-effective alternative to magnetic resonance imaging for imaging breast cancer, especially in dense breasts. However, one limitation is the poor quantification of iodine contrast since the true three-dimensional lesion shape cannot be inferred from the two-dimensional (2D) projection. Use of limited angle tomography can potentially overcome this limitation by segmenting the iodine map generated by the first-pass reconstruction using a convolutional neural network, and using this segmentation to restrict the iodine distribution in the second pass of the reconstruction. To evaluate the performance of the algorithms, a set of 2D digital breast phantoms containing targets with varying iodine concentration was used. In each breast phantom, a single simulated lesion with a random size (4 to 8 mm) was placed in a random location within each phantom, with the iodine distribution defined as either homogeneous or rim-enhanced and blood iodine concentration set between 1.4 and 5.6 mg/mL. Limited angle projection data of these phantoms were simulated for wide and narrow angle geometries, and the proposed reconstruction and segmentation algorithms were applied. RESULTS: The median Dice similarity coefficient of the segmented masks was 0.975 for the wide angle data and 0.926 for the narrow angle data. Using these segmentations during the second reconstruction pass resulted in an improvement in the concentration estimates (mean estimated-to-true concentration ratio, before and after second pass: 48% to 73% for wide angle; 30% to 73% for narrow angle), and a reduction in the coefficient of variation of the estimates (55% to 27% for wide angle; 54% to 35% for narrow angle). CONCLUSION: We demonstrate that the proposed two-pass reconstruction can potentially improve accuracy and precision of iodine quantification in contrast-enhanced tomosynthesis.


Iodine , Algorithms , Humans , Mammography , Phantoms, Imaging , Tomography , Tomography, X-Ray Computed
9.
Phys Med Biol ; 64(24): 245004, 2019 12 13.
Article En | MEDLINE | ID: mdl-31703216

Dedicated breast CT is a fully tomographic breast imaging modality with potential for various applications throughout breast cancer care. If implemented to perform dynamic contrast-enhanced (CE) imaging (4D breast CT), it could be useful to obtain functional information at high combined spatio-temporal resolution. Before developing a 4D dedicated breast CT system, a computer simulation method for breast CT perfusion imaging is proposed. The simulation uses previously developed patient-based 4D digital breast phantoms, and generates realistic images with the selected acquisition parameters, allowing to investigate the effect of different acquisition settings on image quality. The simulation pipeline includes all steps of the image generation process, from ray tracing and scatter map generation, to the addition of realistic resolution losses and noise models. The pipeline was validated against experimental measurements performed on physical phantoms with a dedicated breast CT system, in terms of average error compared to ground truth projections (6.0% ± 1.65%), Hounsfield unit (HU) values in a homogeneous phantom (acquired: -149 HU ± 2 HU; simulated: -140 HU ± 2 HU), signal-to-noise ratio (SNR) (average error 6.7% ± 4.2%), noise power spectra (NPS) (average error 4.3% ± 2.5%), modulation transfer function (MTF) (average error 8.4% ± 7.2%), and attenuation of different adipose/glandular equivalent mixtures (average error 6.9% ± 4.0%) and glandular plus iodinated contrast medium concentrations equivalent mixtures (average error of 9.1% ± 9.0%). 4D patient images were then simulated for different 4D digital breast phantoms at different air kerma levels to determine the effect of noise on the extracted tumor perfusion curves. In conclusion, the proposed pipeline could simulate images with a good level of realism, resulting in a tool that can be used for the design, development, and optimization of a 4D dedicated breast CT system.


Breast Neoplasms/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Perfusion Imaging/methods , Computer Simulation , Female , Four-Dimensional Computed Tomography/standards , Humans , Perfusion Imaging/standards , Phantoms, Imaging , Signal-To-Noise Ratio
10.
Sci Rep ; 9(1): 17778, 2019 11 28.
Article En | MEDLINE | ID: mdl-31780707

In this study we compared the image quality of a synchrotron radiation (SR) breast computed tomography (BCT) system with a clinical BCT in terms of contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), noise power spectrum (NPS), spatial resolution and detail visibility. A breast phantom consisting of several slabs of breast-adipose equivalent material with different embedded targets (i.e., masses, fibers and calcifications) was used. Phantom images were acquired using a dedicated BCT system installed at the Radboud University Medical Center (Nijmegen, The Netherlands) and the SR BCT system at the SYRMEP beamline of Elettra SR facility (Trieste, Italy) based on a photon-counting detector. Images with the SR setup were acquired mimicking the clinical BCT conditions (i.e., energy of 30 keV and radiation dose of 6.5 mGy). Images were reconstructed with an isotropic cubic voxel of 273 µm for the clinical BCT, while for the SR setup two phase-retrieval (PhR) kernels (referred to as "smooth" and "sharp") were alternatively applied to each projection before tomographic reconstruction, with voxel size of 57 × 57 × 50 µm3. The CNR for the clinical BCT system can be up to 2-times higher than SR system, while the SNR can be 3-times lower than SR system, when the smooth PhR is used. The peak frequency of the NPS for the SR BCT is 2 to 4-times higher (0.9 mm-1 and 1.4 mm-1 with smooth and sharp PhR, respectively) than the clinical BCT (0.4 mm-1). The spatial resolution (MTF10%) was estimated to be 1.3 lp/mm for the clinical BCT, and 5.0 lp/mm and 6.7 lp/mm for the SR BCT with the smooth and sharp PhR, respectively. The smallest fiber visible in the SR BCT has a diameter of 0.15 mm, while for the clinical BCT is 0.41 mm. Calcification clusters with diameter of 0.13 mm are visible in the SR BCT, while the smallest diameter for the clinical BCT is 0.29 mm. As expected, the image quality of the SR BCT outperforms the clinical BCT system, providing images with higher spatial resolution and SNR, and with finer granularity. Nevertheless, this study assesses the image quality gap quantitatively, giving indications on the benefits associated with SR BCT and providing a benchmarking basis for its clinical implementation. In addition, SR-based studies can provide a gold-standard in terms of achievable image quality, constituting an upper-limit to the potential clinical development of a given technique.


Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Algorithms , Female , Humans , Mammography/instrumentation , Phantoms, Imaging , Signal-To-Noise Ratio , Synchrotrons/instrumentation , Tomography, X-Ray Computed/instrumentation
11.
Med Phys ; 46(5): 2264-2274, 2019 May.
Article En | MEDLINE | ID: mdl-30888690

PURPOSE: The purpose of this study was to assess, using an anthropomorphic digital phantom, the accuracy of algorithms in registering precontrast and contrast-enhanced computed tomography (CT) chest images for generation of iodine maps of the pulmonary parenchyma via temporal subtraction. MATERIALS AND METHODS: The XCAT phantom, with enhanced airway and pulmonary vessel structures, was used to simulate precontrast and contrast-enhanced chest images at various inspiration levels and added CT simulation for realistic system noise. Differences in diaphragm position were varied between 0 and 20 mm, with the maximum chosen to exceed the 95th percentile found in a dataset of 100 clinical subtraction CTs. In addition, the influence of whole body movement, degree of iodine enhancement, beam hardening artifacts, presence of nodules and perfusion defects in the pulmonary parenchyma, and variation in noise on the registration were also investigated. Registration was performed using three lung registration algorithms - a commercial (algorithm A) and a prototype (algorithm B) version from Canon Medical Systems and an algorithm from the MEVIS Fraunhofer institute (algorithm C). For each algorithm, we calculated the voxel-by-voxel difference between the true deformation and the algorithm-estimated deformation in the lungs. RESULTS: The median absolute residual error for all three algorithms was smaller than the voxel size (1.0 × 1.0 × 1.0 mm3 ) for up to an 8 mm diaphragm difference, which is the average difference in diaphragm levels found clinically, and increased with increasing difference in diaphragm position. At 20 mm diaphragm displacement, the median absolute residual error after registration was 0.85 mm (interquartile range, 0.51-1.47 mm) for algorithm A, 0.82 mm (0.50-1.40 mm) for algorithm B, and 0.91 mm (0.54-1.52 mm) for algorithm C. The largest errors were seen in the paracardiac regions and close to the diaphragm. The impact of all other evaluated conditions on the residual error varied, resulting in an increase in the median residual error lower than 0.1 mm for all algorithms, except in the case of whole body displacements for algorithm B, and with increased noise for algorithm C. CONCLUSION: Motion correction software can compensate for respiratory and cardiac motion with a median residual error below 1 mm, which was smaller than the voxel size, with small differences among the tested registration algorithms for different conditions. Perfusion defects above 50 mm will be visible with the commercially available subtraction CT software, even in poorly registered areas, where the median residual error in that area was 7.7 mm.


Algorithms , Lung/diagnostic imaging , Phantoms, Imaging , Subtraction Technique/instrumentation , Tomography, X-Ray Computed/instrumentation , Artifacts , Humans , Lung/physiology , Movement , Signal-To-Noise Ratio
12.
Med Phys ; 43(12): 6577, 2016 Dec.
Article En | MEDLINE | ID: mdl-27908152

PURPOSE: In this work, the authors design and validate a model observer that can detect groups of microcalcifications in a four-alternative forced choice experiment and use it to optimize a smoothing prior for detectability of microcalcifications. METHODS: A channelized Hotelling observer (CHO) with eight Laguerre-Gauss channels was designed to detect groups of five microcalcifications in a background of acrylic spheres by adding the CHO log-likelihood ratios calculated at the expected locations of the five calcifications. This model observer is then applied to optimize the detectability of the microcalcifications as a function of the smoothing prior. The authors examine the quadratic and total variation (TV) priors, and a combination of both. A selection of these reconstructions was then evaluated by human observers to validate the correct working of the model observer. RESULTS: The authors found a clear maximum for the detectability of microcalcification when using the total variation prior with weight ßTV = 35. Detectability only varied over a small range for the quadratic and combined quadratic-TV priors when weight ßQ of the quadratic prior was changed by two orders of magnitude. Spearman correlation with human observers was good except for the highest value of ß for the quadratic and TV priors. Excluding those, the authors found ρ = 0.93 when comparing detection fractions, and ρ = 0.86 for the fitted detection threshold diameter. CONCLUSIONS: The authors successfully designed a model observer that was able to predict human performance over a large range of settings of the smoothing prior, except for the highest values of ß which were outside the useful range for good image quality. Since detectability only depends weakly on the strength of the combined prior, it is not possible to pick an optimal smoothness based only on this criterion. On the other hand, such choice can now be made based on other criteria without worrying about calcification detectability.


Algorithms , Breast/diagnostic imaging , Calcinosis/diagnostic imaging , Image Processing, Computer-Assisted/methods , Mammography , Humans , Phantoms, Imaging , Reproducibility of Results
13.
Med Phys ; 43(9): 5104, 2016 Sep.
Article En | MEDLINE | ID: mdl-27587041

PURPOSE: The aim of this work was twofold: (1) to examine whether, with standard automatic exposure control (AEC) settings that maintain pixel values in the detector constant, lesion detectability in clinical images decreases as a function of breast thickness and (2) to verify whether a new AEC setup can increase lesion detectability at larger breast thicknesses. METHODS: Screening patient images, acquired on two identical digital mammography systems, were collected over a period of 2 yr. Mammograms were acquired under standard AEC conditions (part 1) and subsequently with a new AEC setup (part 2), programmed to use the standard AEC settings for compressed breast thicknesses ≤49 mm, while a relative dose increase was applied above this thickness. The images were divided into four thickness groups: T1 ≤ 29 mm, T2 = 30-49 mm, T3 = 50-69 mm, and T4 ≥ 70 mm, with each thickness group containing 130 randomly selected craniocaudal lesion-free images. Two measures of density were obtained for every image: a BI-RADS score and a map of volumetric breast density created with a software application (VolparaDensity, Matakina, NZ). This information was used to select subsets of four images, containing one image from each thickness group, matched to a (global) BI-RADS score and containing a region with the same (local) volpara volumetric density value. One selected lesion (a microcalcification cluster or a mass) was simulated into each of the four images. This process was repeated so that, for a given thickness group, half the images contained a single lesion and half were lesion-free. The lesion templates created and inserted in groups T3 and T4 for the first part of the study were then inserted into the images of thickness groups T3 and T4 acquired with higher dose settings. Finally, all images were visualized using the ViewDEX software and scored by four radiologists performing a free search study. A statistical jackknife-alternative free-response receiver operating characteristic analysis was applied. RESULTS: For part 1, the alternative free-response receiver operating characteristic curves for the four readers were 0.80, 0.65, 0.55 and 0.56 in going from T1 to T4, indicating a decrease in detectability with increasing breast thickness. P-values and the 95% confidence interval showed no significant difference for the T3-T4 comparison (p = 0.78) while all the other differences were significant (p < 0.05). Separate analysis of microcalcification clusters presented the same results while for mass detection, the only significant difference came when comparing T1 to the other thickness groups. Comparing the scores of part 1 and part 2, results for the T3 group acquired with the new AEC setup and T3 group at standard AEC doses were significantly different (p = 0.0004), indicating improved detection. For this group a subanalysis for microcalcification detection gave the same results while no significant difference was found for mass detection. CONCLUSIONS: These data using clinical images confirm results found in simple QA tests for many mammography systems that detectability falls as breast thickness increases. Results obtained with the AEC setup for constant detectability above 49 mm showed an increase in lesion detection with compressed breast thickness, bringing detectability of lesions to the same level.


Breast/diagnostic imaging , Breast/pathology , Mammography/methods , ROC Curve , Radiation Dosage , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Calcinosis/diagnostic imaging , Calcinosis/pathology , Humans , Phantoms, Imaging
14.
Eur Heart J Cardiovasc Imaging ; 17(2): 162-8, 2016 Feb.
Article En | MEDLINE | ID: mdl-26003152

AIMS: Interventional left ventricular (LV) procedures integrating static 3D anatomy visualization are subject to mismatch with dynamic catheter movements due to prominent LV motion. We aimed to evaluate the accuracy of a recently developed acquisition and post-processing protocol for low radiation dose LV multi-phase rotational angiography (4DRA) in patients. METHODS AND RESULTS: 4DRA image acquisition of the LV was performed as investigational acquisition in patients undergoing left-sided ablation (11 men; BMI = 24.7 ± 2.5 kg/m²). Iodine contrast was injected in the LA, while pacing from the RA at a cycle length of 700 ms. 4DRA acquisition and reconstruction were possible in all 11 studies. Reconstructed images were post-processed using streak artefact reduction algorithms and an interphase registration-based filtering method, increasing contrast-to-noise ratio by a factor 8.2 ± 2.1. This enabled semi-automatic segmentation, yielding LV models of five equidistant phases per cardiac cycle. For evaluation, off-line 4DRA fluoroscopy registration was performed, and the 4DRA LV contours of the different phases were compared with the contours of five corresponding phases of biplane LV angiography, acquired in identical circumstances. Of the distances between these contours, 95% were <4 mm in both incidences. Effective radiation dose for 4DRA, calculated by patient-specific Monte-Carlo simulation, was 5.1 ± 1.1 mSv. CONCLUSION: Creation of 4DRA LV models in man is feasible at near-physiological heart rate and with clinically acceptable radiation dose. They showed high accuracy with respect to LV angiography in RAO and LAO. The presented technology not only opens perspectives for full cardiac cycle dynamic anatomical guidance during interventional procedures, but also for 3DRA without need for very rapid pacing.


Catheter Ablation , Coronary Angiography/methods , Radiographic Image Interpretation, Computer-Assisted , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/surgery , Algorithms , Artifacts , Cardiac Catheterization , Contrast Media , Female , Fluoroscopy , Humans , Male , Middle Aged , Monte Carlo Method , Radiation Dosage
15.
Med Phys ; 42(11): 6537-48, 2015 Nov.
Article En | MEDLINE | ID: mdl-26520744

PURPOSE: The authors wish to evaluate the possible advantages of using a multigrid approach to maximum-a-posteriori reconstruction in digital breast tomosynthesis together with block-iterative updates in the form of either plane-by-plane updates or ordered subsets. METHODS: The authors previously developed a penalized maximum likelihood reconstruction algorithm with resolution model dedicated to breast tomosynthesis [K. Michielsen et al., "Patchwork reconstruction with resolution modeling for digital breast tomosynthesis," Med. Phys. 40, 031105 (10pp.) (2013)]. This algorithm was extended with ordered subsets and multigrid updates, and the effects on the convergence and on limited angle artifact appearance were evaluated on a mathematical phantom and patient data. To ensure a fair comparison, the analysis was performed at the same computational cost for all methods. To assess convergence and artifact creation in the phantom reconstructions, the authors looked at posterior likelihood, sum of squared residuals, contrast of identical calcifications at different positions, and the standard deviation between the contrasts of these calcifications. For the patient cases, the authors calculated posterior likelihood, measured the signal difference to noise ratio of subtle microcalcifications, and visually evaluated the reconstructions. RESULTS: The authors selected multigrid sequences scoring in the best 10% of the four evaluated parameters, except for the reconstructions with subsets where a low standard deviation of the contrast was incompatible with the three other parameters. In further evaluation of phantom reconstructions from noisy data and patient data, the authors found improved convergence and a reduction in artifacts for our chosen multigrid reconstructions compared to the single grid reconstructions with equivalent computational cost, although there was a diminishing return for an increasing number of subsets. CONCLUSIONS: Multigrid reconstruction improves upon reconstruction with a fixed grid when evaluated at a fixed computational cost. For multigrid reconstruction, using plane-by-plane updates or applying ordered subsets resulted in similar performance.


Algorithms , Breast Neoplasms/diagnostic imaging , Imaging, Three-Dimensional/methods , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Female , Humans , Imaging, Three-Dimensional/instrumentation , Mammography/instrumentation , Phantoms, Imaging , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/instrumentation
16.
Acta Radiol ; 55(1): 62-70, 2014 Feb.
Article En | MEDLINE | ID: mdl-23873889

BACKGROUND: Three-dimensional (3D) roadmap is a recently developed imaging technique used to guide diagnostic and interventional catheter-directed procedures and mainly evaluated for neurovascular procedures. Few data with regard to efficacy and radiation dose are currently available in literature. PURPOSE: To evaluate the use of 3D roadmap technique as compared with the conventional two-dimensional (2D) roadmap for uterine artery catheterization and embolization during uterine fibroid embolization and assess the potential impact on radiation dose, contrast load, and total procedure time. MATERIAL AND METHODS: In this prospective study, 40 patients were randomly assigned to the 2D or 3D roadmap technique for uterine artery catheterization. Demographic data, specifically the patient's age, weight, height, pelvic circumference, and total uterine and fibroid volume were recorded. Exposure parameters, contrast load, and procedure time were recorded and organ doses for ovaries and uterus were calculated. RESULTS: Demographic data did not differ between the groups. Catheterization and embolization of both uterine arteries were feasible in all patients, although in one patient in the 3D group, a focal dissection of the proximal uterine artery occurred. No significant difference in estimated ovarian dose was found in the 3D versus 2D group (P = 0.07). Total procedure time was shorter in the 2D group (P = 0.01) and no difference in total contrast load was seen (P = 0.17). CONCLUSION: Both roadmap techniques are effective imaging-guided tools for uterine artery catheterization, without difference in terms of radiation exposure or contrast load. The total procedure time is shorter in the 2D group.


Angiography/methods , Catheterization/methods , Imaging, Three-Dimensional , Leiomyoma/diagnostic imaging , Leiomyoma/therapy , Uterine Artery Embolization/methods , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/therapy , Adult , Contrast Media , Female , Humans , Iohexol/analogs & derivatives , Prospective Studies , Radiation Dosage , Treatment Outcome
17.
Med Phys ; 40(3): 031105, 2013 Mar.
Article En | MEDLINE | ID: mdl-23464285

PURPOSE: Digital breast tomosynthesis is a relatively new diagnostic x-ray modality that allows high resolution breast imaging while suppressing interference from overlapping anatomical structures. However, proper visualization of microcalcifications remains a challenge. For the subset of systems considered by the authors, the main cause of deterioration is movement of the x-ray source during exposures. They propose a modified grouped coordinate ascent algorithm that includes a specific acquisition model to compensate for this deterioration. METHODS: A resolution model based on the movement of the x-ray source during image acquisition is created and combined with a grouped coordinate ascent algorithm. Choosing planes parallel to the detector surface as the groups enables efficient implementation of the position dependent resolution model. In the current implementation, the resolution model is approximated by a Gaussian smoothing kernel. The effect of the resolution model on the iterative reconstruction is evaluated by measuring contrast to noise ratio (CNR) of spherical microcalcifications in a homogeneous background. After this, the new reconstruction method is compared to the optimized filtered backprojection method for the considered system, by performing two observer studies: the first study simulates clusters of spherical microcalcifications in a power law background for a free search task; the second study simulates smooth or irregular microcalcifications in the same type of backgrounds for a classification task. RESULTS: Including the resolution model in the iterative reconstruction methods increases the CNR of microcalcifications. The first observer study shows a significant improvement in detection of microcalcifications (p = 0.029), while the second study shows that performance on a classification task remains the same (p = 0.935) compared to the filtered backprojection method. CONCLUSIONS: The new method shows higher CNR and improved visualization of microcalcifications in an observer experiment on synthetic data. Further study of the negative results of the classification task showed performance variations throughout the volume linked to the changing noise structure introduced by the combination of the resolution model and the smoothing prior.


Breast , Mammography/methods , Models, Theoretical , Radiographic Image Enhancement/methods , Algorithms , Phantoms, Imaging
18.
J Appl Clin Med Phys ; 12(4): 3478, 2011 Nov 15.
Article En | MEDLINE | ID: mdl-22089004

Cone-beam CT (CBCT) has shown to be a useful imaging modality for various dentomaxillofacial applications. However, optimization and quality control of dental CBCT devices is hampered due to the lack of an appropriate tool for image quality assessment. To investigate the application of different image quality parameters for CBCT, a prototype polymethyl methacrylate (PMMA) cylindrical phantom with inserts for image quality analysis was developed. Applicability and reproducibility of the phantom were assessed using seven CBCT devices with different scanning protocols. Image quality parameters evaluated were: CT number correlation, contrast resolution, image homogeneity and uniformity, point spread function, and metal artifacts. Deviations of repeated measurements were between 0.0% and 3.3%. Correlation coefficients of CBCT voxel values with CT numbers ranged between 0.68 and 1.00. Contrast-to-noise ratio (CNR) values were much lower for hydroxyapatite (0 < CNR < 7.7) than for air and aluminum (5.0 < CNR < 32.8). Noise values ranged between 35 and 419. The uniformity index was between 3.3% and 11.9%. Full width at half maximum (FWHM) measurements varied between 0.43 mm and 1.07 mm. The increase of mean voxel values surrounding metal objects ranged between 6.7% and 43.0%. Results from preliminary analyses of the prototype quality control phantom showed its potential for routine quality assurance on CBCT. Large differences in image quality performance were seen between CBCT devices. Based on the initial evaluations, the phantom can be optimized and validated.


Cone-Beam Computed Tomography/instrumentation , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Algorithms , Cone-Beam Computed Tomography/methods , Dental Equipment , Polymethyl Methacrylate , Quality Control , Radiation Dosage , Reproducibility of Results
19.
Forensic Sci Int ; 201(1-3): 112-7, 2010 Sep 10.
Article En | MEDLINE | ID: mdl-20554135

INTRODUCTION: Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. OBJECTIVE: To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. MATERIALS AND METHODS: Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. RESULTS: Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p<0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay at 60 kVp, MinRay at 70 kVp, AnyRay, Nomad and Rextar were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operator's hand being lowest with protective shielding (Nomad: 0.1 microGy). It was also low while using remote control (distance>1m: Rextar <0.2 microGy, MinRay <0.1 microGy). CONCLUSIONS: The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene.


Radiation Dosage , Radiography, Dental/instrumentation , Forensic Dentistry/instrumentation , Humans , Occupational Exposure , Physics , Quality Control
...