Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563565

RESUMEN

Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Niño , Proteínas de Unión al ADN/genética , Síndrome de Cornelia de Lange/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Células Germinativas/metabolismo , Humanos , Linfoma/genética , Mutación , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34769003

RESUMEN

While the shelterin complex guards and coordinates the mechanism of telomere regulation, deregulation of this process is tightly linked to malignant transformation and cancer. Here, we present the novel finding of a germline stop-gain variant (p.Q199*) in the shelterin complex gene POT1, which was identified in a child with acute myeloid leukemia. We show that the cells overexpressing the mutated POT1 display increased DNA damage and chromosomal instabilities compared to the wildtype counterpart. Protein and mRNA expression analyses in the primary patient cells further confirm that, physiologically, the variant leads to a nonfunctional POT1 allele in the patient. Subsequent telomere length measurements in the primary cells carrying heterozygous POT1 p.Q199* as well as POT1 knockdown AML cells revealed telomeric elongation as the main functional effect. These results show a connection between POT1 p.Q199* and telomeric dysregulation and highlight POT1 germline deficiency as a predisposition to myeloid malignancies in childhood.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Leucemia Mieloide Aguda/genética , Trastornos Mieloproliferativos/genética , Complejo Shelterina/genética , Proteínas de Unión a Telómeros/genética , Adulto , Daño del ADN/genética , Células Germinativas , Mutación de Línea Germinal/genética , Células HEK293 , Humanos , Células Mieloides , ARN Mensajero/genética , Telómero/genética , Adulto Joven
3.
Intensive Care Med Exp ; 8(Suppl 1): 24, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33336305

RESUMEN

BACKGROUND: Flow-controlled ventilation (FCV) allows expiratory flow control, reducing the collapse of the airways during expiration. The performance of FCV during one-lung ventilation (OLV) under intravascular normo- and hypovolaemia is currently unknown. In this explorative study, we hypothesised that OLV with FCV improves PaO2 and reduces mechanical power compared to volume-controlled ventilation (VCV). Sixteen juvenile pigs were randomly assigned to one of two groups: (1) intravascular normovolaemia (n = 8) and (2) intravascular hypovolaemia (n = 8). To mimic inflammation due to major thoracic surgery, a thoracotomy was performed, and 0.5 µg/kg/h lipopolysaccharides from Escherichia coli continuously administered intravenously. Animals were randomly assigned to OLV with one of two sequences (60 min per mode): (1) VCV-FCV or (2) FCV-VCV. Variables of gas exchange, haemodynamics and respiratory signals were collected 20, 40 and 60 min after initiation of OLV with each mechanical ventilation mode. The distribution of ventilation was determined using electrical impedance tomography (EIT). RESULTS: Oxygenation did not differ significantly between modes (P = 0.881). In the normovolaemia group, the corrected expired minute volume (P = 0.022) and positive end-expiratory pressure (PEEP) were lower during FCV than VCV. The minute volume (P ≤ 0.001), respiratory rate (P ≤ 0.001), total PEEP (P ≤ 0.001), resistance of the respiratory system (P ≤ 0.001), mechanical power (P ≤ 0.001) and resistive mechanical power (P ≤ 0.001) were lower during FCV than VCV irrespective of the volaemia status. The distribution of ventilation did not differ between both ventilation modes (P = 0.103). CONCLUSIONS: In a model of OLV in normo- and hypovolemic pigs, mechanical power was lower during FCV compared to VCV, without significant differences in oxygenation. Furthermore, the efficacy of ventilation was higher during FCV compared to VCV during normovolaemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA