Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951647

RESUMEN

Nature has evolved biosynthetic pathways to molecules possessing reactive warheads that inspired the development of many therapeutic agents, including penicillin antibiotics. Peptides armed with electrophilic warheads have proven to be particularly effective covalent inhibitors, providing essential antimicrobial, antiviral and anticancer agents. Here we provide a full characterization of the pathways that nature deploys to assemble peptides with ß-lactone warheads, which are potent proteasome inhibitors with promising anticancer activity. Warhead assembly involves a three-step cryptic methylation sequence, which is likely required to reduce unfavorable electrostatic interactions during the sterically demanding ß-lactonization. Amide-bond synthetase and adenosine triphosphate (ATP)-grasp enzymes couple amino acids to the ß-lactone warhead, generating the bioactive peptide products. After reconstituting the entire pathway to ß-lactone peptides in vitro, we go on to deliver a diverse range of analogs through enzymatic cascade reactions. Our approach is more efficient and cleaner than the synthetic methods currently used to produce clinically important warhead-containing peptides.

2.
Curr Opin Biotechnol ; 87: 103125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547587

RESUMEN

High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.


Asunto(s)
Técnicas Biosensibles , Ensayos Analíticos de Alto Rendimiento , Técnicas Biosensibles/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas , Biotecnología/métodos , Productos Biológicos/metabolismo , Productos Biológicos/análisis
3.
Nat Commun ; 13(1): 380, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046426

RESUMEN

Amides are one of the most fundamental chemical bonds in nature. In addition to proteins and other metabolites, many valuable synthetic products comprise amide bonds. Despite this, there is a need for more sustainable amide synthesis. Herein, we report an integrated next generation multi-catalytic system, merging nitrile hydratase enzymes with a Cu-catalysed N-arylation reaction in a single reaction vessel, for the construction of ubiquitous amide bonds. This synergistic one-pot combination of chemo- and biocatalysis provides an amide bond disconnection to precursors, that are orthogonal to those in classical amide synthesis, obviating the need for protecting groups and delivering amides in a manner unachievable using existing catalytic regimes. Our integrated approach also affords broad scope, very high (molar) substrate loading, and has excellent functional group tolerance, telescoping routes to natural product derivatives, drug molecules, and challenging chiral amides under environmentally friendly conditions at scale.


Asunto(s)
Amidas/metabolismo , Biocatálisis , Enzimas/metabolismo , Cinética , Nitrilos/metabolismo , Estereoisomerismo
4.
Nat Commun ; 12(1): 6872, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824225

RESUMEN

Re-engineering biosynthetic assembly lines, including nonribosomal peptide synthetases (NRPS) and related megasynthase enzymes, is a powerful route to new antibiotics and other bioactive natural products that are too complex for chemical synthesis. However, engineering megasynthases is very challenging using current methods. Here, we describe how CRISPR-Cas9 gene editing can be exploited to rapidly engineer one of the most complex megasynthase assembly lines in nature, the 2.0 MDa NRPS enzymes that deliver the lipopeptide antibiotic enduracidin. Gene editing was used to exchange subdomains within the NRPS, altering substrate selectivity, leading to ten new lipopeptide variants in good yields. In contrast, attempts to engineer the same NRPS using a conventional homologous recombination-mediated gene knockout and complementation approach resulted in only traces of new enduracidin variants. In addition to exchanging subdomains within the enduracidin NRPS, subdomains from a range of NRPS enzymes of diverse bacterial origins were also successfully utilized.


Asunto(s)
Antibacterianos/biosíntesis , Edición Génica/métodos , Complejos Multienzimáticos/genética , Antibacterianos/química , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Lipopéptidos/biosíntesis , Lipopéptidos/química , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Mutación , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Dominios Proteicos , Streptomyces/genética , Streptomyces/metabolismo , Biología Sintética
5.
Microb Genom ; 7(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34747689

RESUMEN

Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid's parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.


Asunto(s)
Edición Génica , Streptomyces , Cromosomas , Edición Génica/métodos , Plásmidos/genética , Streptomyces/genética
6.
Nature ; 593(7859): 391-398, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012085

RESUMEN

Coronatine and related bacterial phytotoxins are mimics of the hormone jasmonyl-L-isoleucine (JA-Ile), which mediates physiologically important plant signalling pathways1-4. Coronatine-like phytotoxins disrupt these essential pathways and have potential in the development of safer, more selective herbicides. Although the biosynthesis of coronatine has been investigated previously, the nature of the enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains unknown1,2. Here we characterize a family of enzymes, coronafacic acid ligases (CfaLs), and resolve their structures. We found that CfaL can also produce JA-Ile, despite low similarity with the Jar1 enzyme that is responsible for ligation of JA and L-Ile in plants5. This suggests that Jar1 and CfaL evolved independently to catalyse similar reactions-Jar1 producing a compound essential for plant development4,5, and the bacterial ligases producing analogues toxic to plants. We further demonstrate how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the need for protecting groups. Highly selective kinetic resolutions of racemic donor or acceptor substrates were achieved, affording homochiral products. We also used structure-guided mutagenesis to engineer improved CfaL variants. Together, these results show that CfaLs can deliver a wide range of amides for agrochemical, pharmaceutical and other applications.


Asunto(s)
Amidas/metabolismo , Ligasas/química , Ligasas/metabolismo , Amidas/química , Aminoácidos/biosíntesis , Aminoácidos/química , Azospirillum lipoferum/enzimología , Azospirillum lipoferum/genética , Ácidos Carboxílicos/metabolismo , Ciclopentanos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Indenos/química , Isoleucina/análogos & derivados , Isoleucina/biosíntesis , Isoleucina/química , Cinética , Modelos Moleculares , Pectobacterium/enzimología , Pectobacterium/genética , Pseudomonas syringae/enzimología , Pseudomonas syringae/genética
7.
Synth Biol (Oxf) ; 5(1): ysaa012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195815

RESUMEN

Natural plant-based flavonoids have drawn significant attention as dietary supplements due to their potential health benefits, including anti-cancer, anti-oxidant and anti-asthmatic activities. Naringenin, pinocembrin, eriodictyol and homoeriodictyol are classified as (2S)-flavanones, an important sub-group of naturally occurring flavonoids, with wide-reaching applications in human health and nutrition. These four compounds occupy a central position as branch point intermediates towards a broad spectrum of naturally occurring flavonoids. Here, we report the development of Escherichia coli production chassis for each of these key gatekeeper flavonoids. Selection of key enzymes, genetic construct design and the optimization of process conditions resulted in the highest reported titers for naringenin (484 mg/l), improved production of pinocembrin (198 mg/l) and eriodictyol (55 mg/l from caffeic acid), and provided the first example of in vivo production of homoeriodictyol directly from glycerol (17 mg/l). This work provides a springboard for future production of diverse downstream natural and non-natural flavonoid targets.

9.
Angew Chem Int Ed Engl ; 59(35): 14950-14956, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32402113

RESUMEN

S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs) catalyse the methylation of a vast array of small metabolites and biomacromolecules. Recently, rare carboxymethylation pathways have been discovered, including carboxymethyltransferase enzymes that utilise a carboxy-SAM (cxSAM) cofactor generated from SAM by a cxSAM synthase (CmoA). We show how MT enzymes can utilise cxSAM to catalyse carboxymethylation of tetrahydroisoquinoline (THIQ) and catechol substrates. Site-directed mutagenesis was used to create orthogonal MTs possessing improved catalytic activity and selectivity for cxSAM, with subsequent coupling to CmoA resulting in more efficient and selective carboxymethylation. An enzymatic approach was also developed to generate a previously undescribed co-factor, carboxy-S-adenosyl-l-ethionine (cxSAE), thereby enabling the stereoselective transfer of a chiral 1-carboxyethyl group to the substrate.


Asunto(s)
Cristalografía por Rayos X/métodos , Metiltransferasas/química , Humanos
10.
Metab Eng ; 60: 168-182, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32335188

RESUMEN

Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production.


Asunto(s)
Bacterias/metabolismo , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Benchmarking , Vías Biosintéticas , Industria Química , Simulación por Computador , Fermentación , Ácidos Mandélicos/metabolismo , Estereoisomerismo
11.
Curr Opin Chem Biol ; 55: 77-85, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32058241

RESUMEN

The amide functional group is ubiquitous in nature and one of the most important motifs in pharmaceuticals, agrochemicals, and other valuable products. While coupling amides and carboxylic acids is a trivial synthetic transformation, it often requires protective group manipulation, along with stoichiometric quantities of expensive and deleterious coupling reagents. Nature has evolved a range of enzymes to construct amide bonds, the vast majority of which utilize adenosine triphosphate to activate the carboxylic acid substrate for amine coupling. Despite the fact that these enzymes operate under mild conditions, as well as possessing chemoselectivity and regioselectivity that obviates the need for protecting groups, their synthetic potential has been largely unexplored. In this review, we discuss recent research into the discovery, characterization, and development of amide bond forming enzymes, with an emphasis on stand-alone ligase enzymes that can generate amides directly from simple carboxylic acid and amine substrates.


Asunto(s)
Amida Sintasas/química , Amida Sintasas/metabolismo , Amidas/química , Aciltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aminas/química , Biocatálisis , Ácidos Carboxílicos/química , Coenzima A/metabolismo , Péptido Sintasas/metabolismo , Conformación Proteica , Especificidad por Sustrato
12.
Curr Opin Microbiol ; 51: 88-96, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31743841

RESUMEN

Numerous important therapeutic agents, including widely-used antibiotics, anti-cancer drugs, immunosuppressants, agrochemicals and other valuable compounds, are produced by microorganisms. Many of these are biosynthesised by modular enzymatic assembly line polyketide synthases, non-ribosomal peptide synthetases, and hybrids thereof. To alter the backbone structure of these valuable but difficult to modify compounds, the respective enzymatic machineries can be engineered to create even more valuable molecules with improved properties and/or to bypass resistance mechanisms. In the past, many attempts to achieve assembly line pathway engineering failed or led to enzymes with compromised activity. Recently our understanding of assembly line structural biology, including an appreciation of the conformational changes that occur during the catalytic cycle, have improved hugely. This has proven to be a driving force for new approaches and several recent examples have demonstrated the production of new-to-nature molecules, including anti-infectives. We discuss the developments of the last few years and highlight selected, illuminating examples of assembly line engineering.


Asunto(s)
Antibacterianos/biosíntesis , Bacterias/metabolismo , Proteínas Bacterianas/genética , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Ingeniería de Proteínas , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo
13.
PLoS Biol ; 17(7): e3000347, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31318855

RESUMEN

Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.


Asunto(s)
Antraquinonas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Proteínas Recombinantes/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/clasificación , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Antraquinonas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas , Escherichia coli/genética , Modelos Químicos , Estructura Molecular , Filogenia , Hidrocarburos Policíclicos Aromáticos/química , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Policétidos/química , Proteínas Recombinantes/química
14.
Commun Biol ; 1: 66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271948

RESUMEN

The microbial production of fine chemicals provides a promising biosustainable manufacturing solution that has led to the successful production of a growing catalog of natural products and high-value chemicals. However, development at industrial levels has been hindered by the large resource investments required. Here we present an integrated Design-Build-Test-Learn (DBTL) pipeline for the discovery and optimization of biosynthetic pathways, which is designed to be compound agnostic and automated throughout. We initially applied the pipeline for the production of the flavonoid (2S)-pinocembrin in Escherichia coli, to demonstrate rapid iterative DBTL cycling with automation at every stage. In this case, application of two DBTL cycles successfully established a production pathway improved by 500-fold, with competitive titers up to 88 mg L-1. The further application of the pipeline to optimize an alkaloids pathway demonstrates how it could facilitate the rapid optimization of microbial strains for production of any chemical compound of interest.

15.
Chem Sci ; 9(17): 4109-4117, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29780540

RESUMEN

The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids.

16.
Angew Chem Int Ed Engl ; 57(33): 10600-10604, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29791083

RESUMEN

Benzylisoquinoline alkaloids (BIAs) are a structurally diverse family of plant secondary metabolites, which have been exploited to develop analgesics, antibiotics, antitumor agents, and other therapeutic agents. Biosynthesis of BIAs proceeds via a common pathway from tyrosine to (S)-reticulene at which point the pathway diverges. Coclaurine N-methyltransferase (CNMT) is a key enzyme in the pathway to (S)-reticulene, installing the N-methyl substituent that is essential for the bioactivity of many BIAs. In this paper, we describe the first crystal structure of CNMT which, along with mutagenesis studies, defines the enzymes active site architecture. The specificity of CNMT was also explored with a range of natural and synthetic substrates as well as co-factor analogues. Knowledge from this study could be used to generate improved CNMT variants required to produce BIAs or synthetic derivatives.


Asunto(s)
Alcaloides/biosíntesis , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides/química , Bencilisoquinolinas/química , Bencilisoquinolinas/metabolismo , Biocatálisis , Dominio Catalítico , Coptis/enzimología , Cristalografía por Rayos X , Cinética , Metiltransferasas/química , Metiltransferasas/genética , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidad por Sustrato
17.
Angew Chem Int Ed Engl ; 57(23): 6830-6833, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603527

RESUMEN

Thaxtomins are diketopiperazine phytotoxins produced by Streptomyces scabies and other actinobacterial plant pathogens that inhibit cellulose biosynthesis in plants. Due to their potent bioactivity and novel mode of action there has been considerable interest in developing thaxtomins as herbicides for crop protection. To address the need for more stable derivatives, we have developed a new approach for structural diversification of thaxtomins. Genes encoding the thaxtomin NRPS from S. scabies, along with genes encoding a promiscuous tryptophan synthase (TrpS) from Salmonella typhimurium, were assembled in a heterologous host Streptomyces albus. Upon feeding indole derivatives to the engineered S. albus strain, tryptophan intermediates with alternative substituents are biosynthesized and incorporated by the NRPS to deliver a series of thaxtomins with different functionalities in place of the nitro group. The approach described herein, demonstrates how genes from different pathways and different bacterial origins can be combined in a heterologous host to create a de novo biosynthetic pathway to "non-natural" product target compounds.


Asunto(s)
Vías Biosintéticas , Indoles/metabolismo , Péptido Sintasas/metabolismo , Piperazinas/metabolismo , Streptomyces/enzimología , Streptomyces/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Ingeniería Genética , Indoles/química , Péptido Sintasas/genética , Piperazinas/química , Plantas/microbiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Streptomyces/química , Streptomyces/genética , Triptófano Sintasa/genética , Triptófano Sintasa/metabolismo
18.
Chem Rev ; 118(1): 232-269, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28466644

RESUMEN

Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.


Asunto(s)
Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Catálisis , Halógenos/metabolismo , Oxidorreductasas/química , Peroxidasas/química , Peroxidasas/metabolismo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Elementos de Transición/química
19.
Anal Chem ; 89(22): 12527-12532, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29076721

RESUMEN

Process analytical technologies (PAT) are used within industry to give real-time measurements of critical quality parameters, ultimately improving the quality by design (QbD) of the final product and reducing manufacturing costs. Spectroscopic and spectrophotometric methods are readily employed within PAT due to their ease of use, compatibility toward a range of sample types, robustness, and multiplexing capabilities. We have developed a UV resonance Raman (UVRR) spectroscopy approach to quantify industrially relevant biotransformations accurately, focusing on nitrile metabolizing enzymes: nitrile hydratase (NHase) and amidase versus nitrilase activity. Sensitive detection of the amide intermediate by UVRR spectroscopy enabled discrimination between the two nitrile-hydrolyzing pathways. Development of a flow-cell apparatus further exemplifies its suitability toward PAT measurements, incorporating in situ analysis within a closed system. Multivariate curve resolution-alternating least-squares (MCR-ALS) was applied to the UVRR spectra, as well as off-line HPLC measurements, to enable absolute quantification of substrate, intermediate, and product. Further application of hard modeling to MCR-ALS deconvolved concentration profiles enabled accurate kinetic determinations, thus removing the requirement for comparative off-line HPLC. Finally, successful quantitative measurements of in vivo activity using whole-cell biotransformations, where two Escherichia coli strains expressing either NHase (transforming benzonitrile to benzamide) or amidase (further conversion of benzamide to benzoic acid), illustrate the power, practicality, and sensitivity of this novel approach of multistep and, with further refinement, we believe, multiple micro-organism biotransformations.


Asunto(s)
Amidohidrolasas/análisis , Aminohidrolasas/análisis , Escherichia coli/citología , Hidroliasas/análisis , Amidohidrolasas/metabolismo , Aminohidrolasas/metabolismo , Biotransformación , Escherichia coli/metabolismo , Hidroliasas/metabolismo , Espectrofotometría Ultravioleta , Espectrometría Raman , Factores de Tiempo
20.
Angew Chem Int Ed Engl ; 56(39): 11841-11845, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28722773

RESUMEN

Flavin-dependent halogenases are useful enzymes for providing halogenated molecules with improved biological activity, or intermediates for synthetic derivatization. We demonstrate how the fungal halogenase RadH can be used to regioselectively halogenate a range of bioactive aromatic scaffolds. Site-directed mutagenesis of RadH was used to identify catalytic residues and provide insight into the mechanism of fungal halogenases. A high-throughput fluorescence screen was also developed, which enabled a RadH mutant to be evolved with improved properties. Finally we demonstrate how biosynthetic genes from fungi, bacteria, and plants can be combined to encode a new pathway to generate a novel chlorinated coumarin "non-natural" product in E. coli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...