Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 2(10): e559, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36200822

RESUMEN

The reversible oxidation of cysteine thiol groups to sulfenic acid by reactive oxygen species (ROS) such as hydrogen peroxide can impact protein function, activity, and localization. As a consequence, ROS have profound effects on cell functions including proliferation, differentiation, and survival. Furthermore, there are clear associations between the effects of ROS on cells and the etiology of several diseases including cancer and neurodegeneration. In spite of the importance of cysteine sulfenylation as a validated post-translational modification, its labile nature impedes efficient and reproducible detection of proteins with cysteine sulfenic acid residues. To overcome this challenge, we developed a novel cell-permeable bifunctional reagent, consisting of two linked bicyclo[6.1.0]nonyne (BCN) moieties coupled with a short ethylenediamine-derived linker (BCN-E-BCN) that enables the detection of sulfenylated proteins in vitro and in intact cells. The two symmetrical BCN groups allow protein sulfenic acids to be selectively tagged with a BCN at one end while allowing for copper-free click chemistry with azide-tagged reagents of the opposite BCN. In this protocol, the synthesis of BCN-E-BCN and its use to detect cysteine sulfenic acids will be detailed. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Copper-mediated cyclopropanation of 1,5-cyclooctadiene Basic Protocol 2: Synthesis of endo- and exo-bicyclononyne Basic Protocol 3: Synthesis of endo-BCN-E-BCN Basic Protocol 4: BCN-E-BCN treatment of wild-type and cysteine-deficient mutant recombinant cofilin protein Basic Protocol 5: BCN-E-BCN labeling in live cells Basic Protocol 6: Western blotting and visualization of BCN-E-BCN-labeled samples.


Asunto(s)
Azidas , Ácidos Sulfénicos , Factores Despolimerizantes de la Actina , Azidas/química , Reactivos de Enlaces Cruzados , Cisteína/análogos & derivados , Cisteína/metabolismo , Etilenodiaminas , Peróxido de Hidrógeno , Indicadores y Reactivos , Proteínas/química , Especies Reactivas de Oxígeno , Ácidos Sulfénicos/química , Compuestos de Sulfhidrilo
2.
Cell Rep ; 41(1): 111442, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198272

RESUMEN

The MICAL1 monooxygenase is an important regulator of filamentous actin (F-actin) structures. Although MICAL1 has been shown to be regulated via protein-protein interactions at the autoinhibitory carboxyl terminus, a link between actin-regulatory RHO GTPase signaling pathways and MICAL1 has not been established. We show that the CDC42 GTPase effector PAK1 associates with and phosphorylates MICAL1 on two serine residues, leading to accelerated F-actin disassembly. PAK1 binds to the amino-terminal catalytic monooxygenase and calponin homology domains, distinct from the autoinhibitory carboxyl terminus. Extracellular ligand stimulation leads to PAK-dependent phosphorylation, linking external signals to MICAL1 phosphorylation. Mass spectrometry indicates that MICAL1 co-expression with CDC42 and PAK1 increases MICAL1 association with hundreds of proteins, including the previously described MICAL1-interacting proteins RAB10 and RAB7A. These results provide insights into a redox-mediated pathway linking extracellular signals to cytoskeleton regulation via a RHO GTPase and indicate a means of communication between RHO and RAB GTPases.


Asunto(s)
Actinas , Quinasas p21 Activadas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Ligandos , Oxigenasas de Función Mixta/metabolismo , Serina/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA