Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Neurobiol Aging ; 137: 8-18, 2024 May.
Article En | MEDLINE | ID: mdl-38394723

Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.


Odorants , Olfactory Perception , Humans , Mice , Animals , Aged , Smell/physiology , Olfactory Perception/physiology , Quality of Life , Olfactory Bulb/physiology
2.
Neurobiol Aging ; 114: 73-83, 2022 06.
Article En | MEDLINE | ID: mdl-35413485

Normal brain aging is associated with deficits in cognitive and sensory processes, due to subtle impairment of synaptic contacts and plasticity. Impairment may be discrete in basal conditions but is revealed when cerebral plasticity is involved, such as in learning contexts. We used olfactory perceptual learning, a non-associative form of learning in which discrimination between perceptually similar odorants is improved following exposure to these odorants, to better understand the cellular bases of olfactory aging in mice. We first evaluated learning ability and memory retention in 2-, 6-, 12-, and 18-month-old mice, and identified 12 months as a pivotal age when memory retention subtly declines before learning becomes totally impaired at later ages. We then showed that learning-induced structural plasticity of adult-born granule cells is specific to cells responding to the learned odorants in the olfactory bulb of young adult mice and loses its specificity in 12-month-old mice, in parallel to memory impairment. Taken together, our data refine our understanding of aging-related impairment of plasticity mechanisms in the olfactory bulb and consequent induction of olfactory learning and memory deficits.


Neurogenesis , Olfactory Bulb , Aging/physiology , Animals , Memory Disorders , Mice , Neurogenesis/physiology , Neuronal Plasticity/physiology , Odorants , Olfactory Bulb/physiology , Smell/physiology
3.
Curr Biol ; 31(8): 1592-1605.e9, 2021 04 26.
Article En | MEDLINE | ID: mdl-33607032

Pleasant odorants are represented in the posterior olfactory bulb (pOB) in mice. How does this hedonic information generate odor-motivated behaviors? Using optogenetics, we report here that stimulating the representation of pleasant odorants in a sensory structure, the pOB, can be rewarding, self-motivating, and is accompanied by ventral tegmental area activation. To explore the underlying neural circuitry downstream of the olfactory bulb (OB), we use 3D high-resolution imaging and optogenetics and determine that the pOB preferentially projects to the olfactory tubercle, whose increased activity is related to odorant attraction. We further show that attractive odorants act as reinforcers in dopamine-dependent place preference learning. Finally, we extend those findings to humans, who exhibit place preference learning and an increase BOLD signal in the olfactory tubercle in response to attractive odorants. Thus, strong and persistent attraction induced by some odorants is due to a direct gateway from the pOB to the reward system.


Emotions , Odorants , Olfactory Bulb/physiology , Olfactory Perception , Reward , Animals , Male , Mice , Mice, Inbred C57BL , Motivation , Olfactory Bulb/cytology , Optogenetics , Smell
4.
J Neurosci ; 40(48): 9260-9271, 2020 11 25.
Article En | MEDLINE | ID: mdl-33097638

Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.


Memory/physiology , Norepinephrine/physiology , Olfactory Bulb/physiology , Smell/physiology , Animals , Computer Simulation , Male , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL , Neurons/physiology , Norepinephrine/metabolism , Odorants , Olfactory Bulb/metabolism , Olfactory Pathways/physiology , Reversal Learning/physiology , Reward , Synapses/physiology , Synaptic Transmission
5.
Cereb Cortex ; 30(2): 534-549, 2020 03 21.
Article En | MEDLINE | ID: mdl-31216001

Olfactory perceptual learning is defined as an improvement in the discrimination of perceptually close odorants after passive exposure to these odorants. In mice, simple olfactory perceptual learning involving the discrimination of two odorants depends on an increased number of adult-born neurons in the olfactory bulb, which refines the bulbar output. However, the olfactory environment is complex, raising the question of the adjustment of the bulbar network to multiple discrimination challenges. Perceptual learning of 1 to 6 pairs of similar odorants led to discrimination of all learned odor pairs. Increasing complexity did not increase adult-born neuron survival but enhanced the number of adult-born neurons responding to learned odorants and their spine density. Moreover, only complex learning induced morphological changes in neurons of the granule cell layer born during the first day of life (P0). Selective optogenetic inactivation of either population confirmed functional involvement of adult-born neurons regardless of the enrichment complexity, while preexisting neurons were required for complex discrimination only.


Discrimination Learning/physiology , Neurogenesis , Neurons/physiology , Olfactory Perception/physiology , Animals , Male , Mice, Inbred C57BL , Neurons/cytology , Odorants , Olfactory Bulb/cytology , Optogenetics
6.
J Neurosci Methods ; 304: 136-145, 2018 07 01.
Article En | MEDLINE | ID: mdl-29684463

BACKGROUND: Cellular imagery using histology sections is one of the most common techniques used in Neuroscience. However, this inescapable technique has severe limitations due to the need to delineate regions of interest on each brain, which is time consuming and variable across experimenters. NEW METHOD: We developed algorithms based on a vectors field elastic registration allowing fast, automatic realignment of experimental brain sections and associated labeling in a brain atlas with high accuracy and in a streamlined way. Thereby, brain areas of interest can be finely identified without outlining them and different experimental groups can be easily analyzed using conventional tools. This method directly readjusts labeling in the brain atlas without any intermediate manipulation of images. RESULTS: We mapped the expression of cFos, in the mouse brain (C57Bl/6J) after olfactory stimulation or a non-stimulated control condition and found an increased density of cFos-positive cells in the primary olfactory cortex but not in non-olfactory areas of the odor-stimulated animals compared to the controls. COMPARISON WITH EXISTING METHOD(S): Existing methods of matching are based on image registration which often requires expensive material (two-photon tomography mapping or imaging with iDISCO) or are less accurate since they are based on mutual information contained in the images. Our new method is non-imaged based and relies only on the positions of detected labeling and the external contours of sections. CONCLUSIONS: We thus provide a new method that permits automated matching of histology sections of experimental brains with a brain reference atlas.


Algorithms , Brain Mapping , Image Processing, Computer-Assisted , Neurons/metabolism , Olfactory Cortex/cytology , Tomography, X-Ray Computed , Animals , Cell Count , Mice , Mice, Inbred C57BL , Odorants , Olfactory Cortex/diagnostic imaging , Proto-Oncogene Proteins c-fos/metabolism , Statistics, Nonparametric
7.
Elife ; 72018 02 28.
Article En | MEDLINE | ID: mdl-29489453

Both passive exposure and active learning through reinforcement enhance fine sensory discrimination abilities. In the olfactory system, this enhancement is thought to occur partially through the integration of adult-born inhibitory interneurons resulting in a refinement of the representation of overlapping odorants. Here, we identify in mice a novel and unexpected dissociation between passive and active learning at the level of adult-born granule cells. Specifically, while both passive and active learning processes augment neurogenesis, adult-born cells differ in their morphology, functional coupling and thus their impact on olfactory bulb output. Morphological analysis, optogenetic stimulation of adult-born neurons and mitral cell recordings revealed that passive learning induces increased inhibitory action by adult-born neurons, probably resulting in more sparse and thus less overlapping odor representations. Conversely, after active learning inhibitory action is found to be diminished due to reduced connectivity. In this case, strengthened odor response might underlie enhanced discriminability.


Brain/physiology , Learning , Neurons/cytology , Neurons/physiology , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Animals , Cell Shape , Cells , Mice , Optogenetics
8.
Nat Neurosci ; 19(7): 876-8, 2016 07.
Article En | MEDLINE | ID: mdl-27273767

Hedonic value is a dominant aspect of olfactory perception. Using optogenetic manipulation in freely behaving mice paired with immediate early gene mapping, we demonstrate that hedonic information is represented along the antero-posterior axis of the ventral olfactory bulb. Using this representation, we show that the degree of attractiveness of odors can be bidirectionally modulated by local manipulation of the olfactory bulb's neural networks in freely behaving mice.


Behavior, Animal/physiology , Nerve Net/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Smell/physiology , Animals , Male , Mice, Inbred C57BL , Odorants/analysis
9.
Chem Senses ; 40(5): 345-50, 2015 Jun.
Article En | MEDLINE | ID: mdl-25917509

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and is characterized by cognitive impairments and altered sensory function. It is caused by absence of fragile X mental retardation protein (FMRP), an RNA-binding protein essential for normal synaptic plasticity and function. Animal models have provided important insights into mechanisms through which loss of FMRP impacts cognitive and sensory development and function. While FMRP is highly enriched in the developing and adult olfactory bulb (OB), its role in olfactory sensory function remains poorly understood. Here, we used a mouse model of FXS, the fmr1 (-/y) mouse, to test whether loss of FMRP impacts olfactory discrimination, habituation, or sensitivity using a spontaneous olfactory cross-habituation task at a range of odorant concentrations. We demonstrated that fmr1 (-/y) mice have a significant decrease in olfactory sensitivity compared with wild type controls. When we controlled for differences in sensitivity, we found no effect of loss of FMRP on the ability to habituate to or spontaneously discriminate between odorants. These data indicate that loss of FMRP significantly alters olfactory sensitivity, but not other facets of basal olfactory function. These findings have important implications for future studies aimed at understanding the role of FMRP on sensory functioning.


Fragile X Mental Retardation Protein/metabolism , Odorants , Olfactory Pathways/metabolism , Olfactory Perception/physiology , Animals , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
...