Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 256, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953247

RESUMEN

BACKGROUND: Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS: Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS: Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.


Asunto(s)
Inteligencia Artificial , Conducta Animal , Masculino , Femenino , Ratones , Animales , Ratas , Conducta Animal/fisiología , Conducta Social , Frecuencia Cardíaca/fisiología , Animales Domésticos
2.
Front Behav Neurosci ; 17: 1230082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809039

RESUMEN

The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.

3.
Lab Anim Res ; 39(1): 9, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189184

RESUMEN

BACKGROUND: Enrichment of home cages in laboratory experiments offers clear advantages, but has been criticized in some respects. First, there is a lack of definition, which makes methodological uniformity difficult. Second, there is concern that the enrichment of home cages may increase the variance of results in experiments. Here, the influence of more natural housing conditions on physiological parameters of female C57BL/6J mice was investigated from an animal welfare point of view. For this purpose, the animals were kept in three different housing conditions: conventional cage housing, enriched housing and the semi naturalistic environment. The focus was on musculoskeletal changes after long-term environmental enrichment. RESULTS: The housing conditions had a long-term effect on the body weight of the test animals. The more complex and natural the home cage, the heavier the animals. This was associated with increased adipose deposits in the animals. There were no significant changes in muscle and bone characteristics except for single clues (femur diameter, bone resorption marker CTX-1). Additionally, the animals in the semi naturalistic environment (SNE) were found to have the fewest bone anomalies. Housing in the SNE appears to have the least effect on stress hormone concentrations. The lowest oxygen uptake was observed in enriched cage housing. CONCLUSIONS: Despite increasing values, observed body weights were in the normal and strain-typical range. Overall, musculoskeletal parameters were slightly improved and age-related effects appear to have been attenuated. The variances in the results were not increased by more natural housing. This confirms the suitability of the applied housing conditions to ensure and increase animal welfare in laboratory experiments.

4.
Front Vet Sci ; 9: 899219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061113

RESUMEN

Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well-being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.

5.
PLoS One ; 16(12): e0261876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34941949

RESUMEN

Numerous studies ascertained positive effects of enriched environments on the well-being of laboratory animals including behavioral, physiological and neurochemical parameters. Conversely, such conclusions imply impaired animal welfare and health in barren husbandry conditions. Moreover, inappropriate housing of laboratory animals may deteriorate the quality of scientific data. Recommendations for housing laboratory animals stipulate that cages should be enriched to mitigate adverse effects of barren housing. In this context, it is not only unclear what exactly is meant by enrichment, but also how the animals themselves interact with the various items on offer. Focal animal observation of female C57BL/6J mice either housed in conventional (CON) or enriched (ENR) conditions served to analyze the impact of enriching housing on welfare related behavior patterns including stereotypical, maintenance, active social, and inactive behaviors. CON conditions resembled current usual housing of laboratory mice, whereas ENR mice received varying enrichment items including foraging, housing and structural elements, and a running disc. Active and inactive use of these elements was quantitatively assessed. CON mice showed significantly more inactive and stereotypical behavior than ENR mice. ENR mice frequently engaged with all enrichment elements, whereby riddles to obtain food reward and the running disc preferably served for active interactions. Offering a second level resulted in high active and inactive interactions. Structural elements fixed at the cagetop were least attractive for the mice. Overall, the presented data underline the positive welfare benefits of enrichment and that mice clearly differentiate between distinct enrichment types, demonstrating that the perspective of the animals themselves should also be taken into account when specifying laboratory housing conditions. This is particularly important, as the ensuring of animal welfare is an essential prerequisite for reliable, reproducible, and scientifically meaningful results.


Asunto(s)
Conducta Exploratoria/fisiología , Comportamiento de Nidificación/fisiología , Animales , Femenino , Vivienda para Animales , Ratones
6.
Animals (Basel) ; 11(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34680021

RESUMEN

Despite tremendous efforts at standardization, the results of scientific studies can vary greatly, especially when considering animal research. It is important to emphasize that consistent different personality-like traits emerge and accumulate over time in laboratory mice despite genetic and environmental standardization. To understand to what extent variability can unfold over time, we conducted a long-term study using inbred mice living in an exceptionally complex environment comprising an area of 4.6 m2 spread over five levels. In this semi-naturalistic environment (SNE) the activity and spatial distribution of 20 female C57Bl/6J was recorded by radio-frequency identification (RFID). All individuals were monitored from an age of 11 months to 22 months and their individual pattern of spatial movement in time is described as roaming entropy. Overall, we detected an increase of diversification in roaming behavior over time with stabilizing activity patterns at the individual level. However, spontaneous behavior of the animals as well as physiological parameters did not correlate with cumulative roaming entropy. Moreover, the amount of variability did not exceed the literature data derived from mice living in restricted conventional laboratory conditions. We conclude that even taking quantum leaps towards improving animal welfare does not inevitably mean a setback in terms of data quality.

7.
Artículo en Alemán | MEDLINE | ID: mdl-32325524

RESUMEN

OBJECTIVE: In order to investigate the suitability of standard fish tank setups for permanent keeping of ornamental pet fish, oxygen consumption and exchange rates were measured in a group of standard aquariums with a volume of 54 litres. MATERIALS AND METHODS: The effects of defined disturbances on oxygen partial pressure in fish tanks were measured. These simulated typical beginners' errors such as a high stocking density, excessive feeding, insufficient filter cleaning, lack of water movement, and plant coverage of the water surface. Quantitative changes in oxygen partial pressure were measured in the tank as well as in a simplified model tank. RESULTS: Oxygen uptake rate of the tank (substrate, aquatic plants, bacteria, reduced substances) was not quantifiable in the experiment. The metabolism of the fish, which increased sharply with the feeding dose, exhibited the greatest effect on oxygen consumption in the fish tank. Oxidative conversion of nitrogen from ammonia to nitrate also caused a decrease in oxygen content, however to a lesser extent. Oxygen uptake from the atmosphere was significantly modulated by water flow rate and size of the diffusion area of the water surface. CONCLUSION AND CLINICAL RELEVANCE: These results allow quantitative predictions concerning the interaction of fish stocking density and oxygen balance in standard commercial aquarium setups. Even under conditions of high stocking density, poor filter hygiene and excessive feeding, all tested tanks demon strated their suitability for permanent keeping of ornamental fish. Care is warranted, however, that water flow is maintained and its surface is not covered by plants. Ideally, the fish should be fed several small portions during daytime rather than a single large ration.


Asunto(s)
Peces/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Mascotas/fisiología , Animales , Medicina Veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...