Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
RSC Adv ; 13(39): 27363-27384, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37711372

The current trend in fighting bacteria is attacking the virulence and quorum-sensing (QS) signals that control bacterial communication and virulence factors, especially biofilm formation. This study reports new Schiff bases and tetracyclic rings based on a pyridine pharmacophore by two methods: a green approach using CAN and a conventional method. The structure of designed derivatives was confirmed using different spectroscopies (IR and 1H/13C NMR) and elemental analysis. The designed derivatives exhibited good to moderate inhibition zones against bacterial and fungal pathogens. In addition, six compounds 2a,b, 3a,b, and 6a,b displayed potency against tested pathogens with eligible MIC and MBC values compared to standard antimicrobial agents. Compound 2a displayed MIC values of 15.6 µg mL-1 compared to Gentamicin (MIC = 250 µg mL-1 against K. pneumoniae), while compound 6b exhibited super-potent activity against P. aeruginosa, and K. pneumoniae with MIC values of 62.5 and 125 µg mL-1, as well as MBC values of 31.25 and 15.6 µg mL-1 compared to Gentamicin (MIC = 250 and 125 µg mL-1 and MBC = 62.5 µg mL-1), respectively. Surprisingly, these six derivatives revealed bactericidal and fungicidal potency and remarkable anti-biofilm activity that could significantly reduce the biofilm formation against MRSA, E. coli, P. aeruginosa, and C. albicans. Furthermore, the most active derivatives reduced the LasR gene's production between 10-40% at 1/8 MICs compared with untreated P. aeruginosa. Besides, they demonstrated promising safety profile on Vero cells (normal cell lines) with IC50 values ranging between (175.17 ± 3.49 to 344.27 ± 3.81 µg mL-1). In addition, the in silico ADMET prediction was carried out and the results revealed that these compounds could be used with oral bioavailability with low toxicity prediction when administered as a candidate drug. Finally, the molecular docking simulation was performed inside LasR and predicted the key binding interactions responsible for the activity that corroborated the biological results.

2.
Sci Rep ; 13(1): 10457, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37380763

The inhibitory effect of di-imine-SB namely ((N1Z, N4E)-N1, N4-bis (4 (dimethylamino) benzylidene) butane 1,4-diamine) on X65-steel in 1 M HCl has been investigated experimentally and theoretically. The electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and weight loss outcomes display the anticorrosion properties of "di-imine- SB". The inhibitory efficiency exceeds 90% at the optimal concentration of 1 × 10-3 M "di-imine- SB". The metal surface was examined further using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The effectiveness of the di-imine-SB is returned into its adsorption on X65-steel surface and found in agreement with Langmuir adsorption isotherm. According to the standard Gibbs free energy of adsorption [Formula: see text], di-imine-SB adsorption tends to be chemical rather than physical, it increases the activation energy ([Formula: see text]) of metal dissolution reaction and makes it hard to occur. The PDP data suggested anodic and cathodic type of the di-imine-SB inhibitor. Meanwhile, increasing the resistance of X65-steel to 301 Ω cm2 after adding 1 mM of di-imine-SB confirms its protective effect. Whereas, the positive value of the fraction of electron transference (ΔN, 0.746), confirms the affinity of di-imine-SB to share electrons to the partially filed 3d-orbital of Fe forming strong protective film over X65-steel surface. Aided by Monte Carlo (MC) simulation, the calculated adsorption energy (Eads) suggests excessive adsorption affinity of di-imine-SB on metal surface over the corrosive chlorides and hydronium ions. A good correlation between the theoretical hypothesis and the experimental inhibition efficiency has been achieved. The comparative study showed the superior of the di-imine-SB as potential corrosion inhibitor compared with those reported before. Finally, global reactivity descriptors; electron affinity (A), ionization potential (I), electronegativity (χ), dipole moment (µ), global hardness ([Formula: see text]), electrophilicity index and, Fukui indices were also calculated and found well correlated to the reactivity of di-imine-SB.

3.
RSC Adv ; 9(19): 10473-10485, 2019 Apr 03.
Article En | MEDLINE | ID: mdl-35515280

In this work, we report the synthesis of two Schiff bases of substituted gallic acid derivatives via amidation reaction and their characterization using 1H-NMR spectroscopy to study their inhibition performance on the aggressive attack of HCl on mild steel (MS). The inhibitive performance was examined using chemical (weight loss) and electrochemical (Tafel and EIS) test methods. The results indicate that these derivatives significantly suppress the dissolution rate of mild steel via adsorption phenomena, which correlates to the Langmuir adsorption model. Tafel data display the mixed-type properties of these compounds and EIS results show that increasing Schiff base concentration not only leads to delaying the charge transfer (R ct) of iron from 26.4 ohm cm-2 to 227.7 ohm cm-2 but also decreases the capacitance of the adsorbed double layer (C dl) from 8.58 (F cm-2) × 10-5 to 2.55 (F cm-2) × 10-5. The inhibition efficiency percentage reaches the peak (90%) at optimum concentration of 250 ppm. The Monte Carlo simulations confirm the adsorption ability of the as-prepared compounds on the Fe (1 1 0) crystal. The SEM/EDX results revealed the presence of a protective film on the mild steel sample.

4.
RSC Adv ; 9(46): 27069-27082, 2019 Aug 23.
Article En | MEDLINE | ID: mdl-35528560

This study aims at preparing three cationic surfactants based on benzotriazole and evaluating their efficiencies as corrosion inhibitors for copper electrodes in seawater using different electrochemical techniques (potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM)). FTIR and 1H NMR spectroscopic techniques confirmed the chemical structures of the as-prepared cationic compounds. The inhibition efficiency increased with the increase the concentration of the as-prepared compounds in the solution. The curves of the potentiodynamic polarization and the plots of EIS techniques show that the performance of all investigated compounds as mixed type. The standard free energy values imply that the three as-prepared compounds show physicochemical adsorption and obey the Langmuir adsorption model. AFM technique observed the reduction in the surface roughness due to the protective film formed on the copper surface. Finally, computational calculations show a great correlation with the experimental results due to the electron-donating effect.

5.
Drug Test Anal ; 4(12): 1009-13, 2012 Dec.
Article En | MEDLINE | ID: mdl-21998089

The construction and electrochemical response characteristics of a screen-printed electrode (SPE) for the determination of dodecyltrimethylammonium bromide (DTAB) are described. The sensor was based on the use of DTA-tetraphenylborate ion association complex as an electroactive material in screen-printed electrode with dioctylsebacate (DOS) as a solvent mediator. In aqueous solution of pH 3, the sensor displayed a stable response for six months with reproducible potential and linear response for surfactant over the concentration range 1.20 × 10(-2) -5.6 × 10(-7) mol L(-1) at 25 °C with Nernstian slope of 55.95 ± 0.58 mV decade(-1) for detection limit of 6.8 x 10(-6) mol L(-1) . The response time was 6-10 s. The selectivity coefficients indicate excellent selectivity for DTAB over many common cations (e.g. Mg(2+), Na(+), K+, Co(2+), Ni(2+), Ca(2+), Cl(-), I(-), SO(4)(-2) and cetylpyridinium chloride (CPC). The sensor was used successfully for the determining of DTAB in pure form and water samples with average recoveries of 99.98, 98.78, and 99.99%.


Ion-Selective Electrodes , Potentiometry/instrumentation , Quaternary Ammonium Compounds/analysis , Surface-Active Agents/analysis , Water Pollutants, Chemical/analysis , Water/chemistry , Calibration , Equipment Design , Hydrogen-Ion Concentration , Ion-Selective Electrodes/standards , Limit of Detection , Linear Models , Potentiometry/standards , Reference Standards , Reproducibility of Results , Solvents/chemistry , Temperature , Tetraphenylborate/chemistry
6.
Analyst ; 136(7): 1488-95, 2011 Apr 07.
Article En | MEDLINE | ID: mdl-21286616

A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method.


Pharmaceutical Preparations/chemistry , Potentiometry/methods , Quaternary Ammonium Compounds/analysis , Tetraphenylborate/chemistry , Hydrogen-Ion Concentration , Ion-Selective Electrodes , Phosphotungstic Acid/chemistry
7.
Anal Chim Acta ; 673(1): 79-87, 2010 Jul 12.
Article En | MEDLINE | ID: mdl-20630181

A new type of screen-printed ion-selective electrode for the determination of cetylpyridinium chloride (CPC) is presented. These new electrodes involve in situ, modified and unmodified screen-printed ion-selective electrodes for the determination of CPC. The screen-printed electrodes (SPEs) show a stable, near-Nernstian response for 1 x 10(-2) to 1 x 10(-6) M CPC at 25 degrees C over the pH range 2-8 with cationic slope 60.66+/-1.10. The lower detection limit is found to be 8 x 10(-7) M and response time of about 3s and exhibit adequate shelf-life (6 months). The fabricated electrodes can be also successfully used in the potentiometric titration of CPC with sodium tetraphenylborate (NaTPB). The analytical performances of the SPEs are compared with those for carbon paste electrode (CPE) and polyvinyl chloride (PVC) electrodes. The method is applied for pharmaceutical preparations with a percentage recovery of 99.60% and R.S.D.=0.53. The frequently used CPC of analytical and technical grade as well as different water samples has been successfully titrated and the results obtained agreed with those obtained with commercial electrode and standard two-phase titration method. The sensitivity of the proposed method is comparable with the official method and ability of field measurements.


Cetylpyridinium/analysis , Ion-Selective Electrodes , Potentiometry/instrumentation , Limit of Detection , Potentiometry/methods , Titrimetry/instrumentation , Titrimetry/methods
...