Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Biomedicines ; 11(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-38001948

(1) Background: Bile acids, known as aids in intestinal fat digestion and as messenger molecules in serum, can be detected in cerebrospinal fluid (CSF), although the blood-brain barrier is generally an insurmountable obstacle for bile acids. The exact mechanisms of the occurrence, as well as possible functions of bile acids in the central nervous system, are not precisely understood. (2) Methods: We conducted a single-center observational trial. The concentrations of 15 individual bile acids were determined using an in-house LC-MS/MS method in 54 patients with various acute and severe disorders of the central nervous system. We analyzed CSF from ventricular drainage taken within 24 h after placement, and blood samples were drawn at the same time for the presence and quantifiability of 15 individual bile acids. (3) Results: At a median time of 19.75 h after a cerebral insult, the concentration of bile acids in the CSF was minute and almost negligible. The CSF concentrations of total bile acids (TBAs) were significantly lower compared to the serum concentrations (serum 0.37 µmol/L [0.24, 0.89] vs. 0.14 µmol/L [0.05, 0.43]; p = 0.033). The ratio of serum-to-CSF bile acid levels calculated from the respective total concentrations were 3.10 [0.94, 14.64] for total bile acids, 3.05 for taurocholic acid, 14.30 [1.11, 27.13] for glycocholic acid, 0.0 for chenodeoxycholic acid, 2.19 for taurochenodeoxycholic acid, 1.91 [0.68, 8.64] for glycochenodeoxycholic acid and 0.77 [0.0, 13.79] for deoxycholic acid; other bile acids were not detected in the CSF. The ratio of CSF-to-serum S100 concentration was 0.01 [0.0, 0.02]. Serum total and conjugated (but not unconjugated) bilirubin levels and serum TBA levels were significantly correlated (total bilirubin p = 0.031 [0.023, 0.579]; conjugated bilirubin p = 0.001 [0.193, 0.683]; unconjugated p = 0.387 [-0.181, 0.426]). No correlations were found between bile acid concentrations and age, delirium, intraventricular blood volume, or outcome measured on a modified Rankin scale. (4) Conclusions: The determination of individual bile acids is feasible using the current LC-MS/MS method. The results suggest an intact blood-brain barrier in the patients studied. However, bile acids were detected in the CSF, which could have been achieved by active transport across the blood-brain barrier.

2.
Crit Care ; 27(1): 372, 2023 09 27.
Article En | MEDLINE | ID: mdl-37759239

BACKGROUND: Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS: To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 µg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS: Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS: Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.


Endotoxemia , Liver Failure , Sepsis , Shock, Septic , Humans , Shock, Septic/metabolism , Endotoxemia/complications , Bile Acids and Salts , Lipopolysaccharides , Escherichia coli , Critical Illness
3.
Intern Emerg Med ; 18(2): 607-615, 2023 03.
Article En | MEDLINE | ID: mdl-36378472

The accumulation of Bile Acids (BA) in serum is a common finding in critically ill patients and has been found in patients with Acute Respiratory Distress Syndrome (ARDS), where liver and biliary function could be essentially affected by the underlying disease process and subsequent therapeutic measures. We hypothesized that the glycine-to-taurine conjugation ratio (G/T-ratio) is predictive of outcome in ARDS patients and would support our previously published hypothesis that the BA profile reflects a (mal-) adaptive response of bile acid production when suffering from a disease or syndrome such as ARDS. In 70 patients with ARDS, we determined conjugated BA fractions from protein precipitated serum samples using a LC-MS/MS method and calculated the G/T-ratios, which were then compared with a healthy control group. In patients with ARDS, the G/T-ratio was markedly lower compared to the control group, due to an increase in taurine-conjugated BA. The G/T ratio was lowest on the day of diagnosis and increased steadily during the following days (control = 3.80 (2.28-4.44); day 0 = 1.79 (1.31-3.86); day 3 = 2.91 (1.71-5.68); day 5 = 2.28 (1.25-7.85), significant increases were found between day 0 and day 3 (p = 0.019) and between day 0 and day 5 (p = 0.031). G/T-ratio was significantly correlated with SAPS II score on day 0 (p = 0.009) and day 3 (p = 0.036) and with survival (p = 0.006). Regarding survival, the receiver-operator characteristic revealed an area-under-the-curve of 0.713 (CI 0.578-0.848), the Youden index revealed a G/T-ratio cut-off level of 2.835 (sensitivity 78.4%, specificity 63.2%). Our findings further support our previously published hypothesis that alterations in BA profiles represent adaptive mechanisms in states of severe disease. Our current study adds the finding of an increase in taurine-conjugated BA expressed by a decrease in the G/T-ratio of conjugated BA in serum. The G/T-ratio on day 3 using a threshold G/T-ratio of 2.8 was even associated with survival (p = 0.006); these results are yet to be confirmed by subsequent studies.


Respiratory Distress Syndrome , Taurine , Humans , Taurine/metabolism , Glycine , Chromatography, Liquid , Tandem Mass Spectrometry , Bile Acids and Salts
4.
Clin Chem Lab Med ; 60(6): 891-900, 2022 05 25.
Article En | MEDLINE | ID: mdl-35313097

OBJECTIVES: Cholestasis and elevated serum bile1 acid levels are common in critically ill patients. This study aims to define the specific pattern of bile acids associated with acute respiratory distress syndrome (ARDS) and the changes in pattern over time. METHODS: Prospective observational study. Serum samples of 70 ARDS patients were analyzed for primary bile acids (cholic acid, chenodeoxycholic acid) and secondary bile acids (deoxycholic acid, litocholic acid, and ursodeoxycholic acid) as well as their glycine and taurine glycation products. RESULTS: Primary bile acid levels increased from day zero to day five by almost 50% (p<0.05). This change bases on a statistically significant increase in all primary bile acids between day 0 and day 5 (cholic acid [CA] p=0.001, taurocholic acid [TCA] p=0.004, glycocholic acid [GCA] p<0.001, chenodeoxycholic acid [CDCA] p=0.036, taurochenodeoxycholic acid [TCDCA] p<0.001, glycochenodeoxycholic acid [GCDCA] p<0.001). Secondary bile acids showed predominantly decreased levels on day 0 compared to the control group and remained stable throughout the study period; the differences between day zero and day five were not statistically significant. Non-survivors exhibited significantly higher levels of TCDCA on day 5 (p<0.05) than survivors. This value was also independently associated with survival in a logistic regression model with an odds ratio of 2.24 (95% CI 0.53-9.46). CONCLUSIONS: The individual bile acid profile of this ARDS patient cohort is unique compared to other disease states. The combination of changes in individual bile acids reflects a shift toward the acidic pathway of bile acid synthesis. Our results support the concept of ARDS-specific plasma levels of bile acids in a specific pattern as an adaptive response mechanism.


Bile Acids and Salts , Respiratory Distress Syndrome , Chenodeoxycholic Acid , Glycine , Humans , Taurine
5.
Diagnostics (Basel) ; 11(12)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34943592

BACKGROUND: Impaired liver function and cholestasis are frequent findings in critically ill patients and are associated with poor outcomes. We tested the hypothesis that hypoxic liver injury and hypoxic cholangiocyte injury are detectable very early in patients with ARDS, may depend on the severity of hypoxemia, and may be aggravated by the use of rescue therapies (high PEEP level and prone positioning) but could be attenuated by extracorporeal membrane oxygenation (ECMO). METHODS: In 70 patients with ARDS, aspartate-aminotransferase (AST), alanin-aminotransferase (ALT) and gamma glutamyltransferase (GGT) were measured on the day of the diagnosis of ARDS and three more consecutive days (day 3, day 5, day 10), total bile acids were measured on day 0, 3, and 5. RESULTS: AST levels increased on day 0 and remained constant until day 5, then dropped to normal on day 10 (day 0: 66.5 U/l; day 3: 60.5 U/l; day 5: 63.5 U/l, day 10: 32.1 U/l), ALT levels showed the exact opposite kinetic. GGT was already elevated on day 0 (91.5 U/l) and increased further throughout (day 3: 163.5 U/l, day 5: 213 U/l, day 10: 307 U/l), total bile acids levels increased significantly from day 0 to day 3 (p = 0.019) and day 0 to day 5 (p < 0.001), but not between day 3 and day 5 (p = 0.217). Total bile acids levels were significantly correlated to GGT on day 0 (p < 0.001), day 3 (p = 0.02), and in a trend on day 5 (p = 0.055). PEEP levels were significantly correlated with plasma levels of AST (day 3), ALT (day 5) and GGT (day 10). Biomarker levels were not associated with the use of ECMO, prone position, the cause of ARDS, and paO2. CONCLUSIONS: We found no evidence of hypoxic liver injury or hypoxic damage to cholangiocytes being caused by the severity of hypoxemia in ARDS patients during the very early phase of the disease. Additionally, mean PEEP level, prone positioning, and ECMO treatment did not have an impact in this regard. Nevertheless, GGT levels were elevated from day zero and rising, this increase was not related to paO2, prone position, ECMO treatment, or mean PEEP, but correlated to total bile acid levels.

6.
Cell Mol Gastroenterol Hepatol ; 12(1): 25-40, 2021.
Article En | MEDLINE | ID: mdl-33545429

BACKGROUND & AIMS: Retention of bile acids in the blood is a hallmark of liver failure. Recent studies have shown that increased serum bile acid levels correlate with bacterial infection and increased mortality. However, the mechanisms by which circulating bile acids influence patient outcomes still are elusive. METHODS: Serum bile acid profiles in 33 critically ill patients with liver failure and their effects on Takeda G-protein-coupled receptor 5 (TGR5), an immunomodulatory receptor that is highly expressed in monocytes, were analyzed using tandem mass spectrometry, novel highly sensitive TGR5 bioluminescence resonance energy transfer using nanoluciferase (NanoBRET, Promega Corp, Madison, WI) technology, and in vitro assays with human monocytes. RESULTS: Twenty-two patients (67%) had serum bile acids that led to distinct TGR5 activation. These TGR5-activating serum bile acids severely compromised monocyte function. The release of proinflammatory cytokines (eg, tumor necrosis factor α or interleukin 6) in response to bacterial challenge was reduced significantly if monocytes were incubated with TGR5-activating serum bile acids from patients with liver failure. By contrast, serum bile acids from healthy volunteers did not influence cytokine release. Monocytes that did not express TGR5 were protected from the bile acid effects. TGR5-activating serum bile acids were a risk factor for a fatal outcome in patients with liver failure, independent of disease severity. CONCLUSIONS: Depending on their composition and quantity, serum bile acids in liver failure activate TGR5. TGR5 activation leads to monocyte dysfunction and correlates with mortality, independent of disease activity. This indicates an active role of TGR5 in liver failure. Therefore, TGR5 and bile acid metabolism might be promising targets for the treatment of immune dysfunction in liver failure.


Bile Acids and Salts/metabolism , Liver Failure/metabolism , Monocytes/metabolism , Receptors, G-Protein-Coupled/metabolism , Bile Acids and Salts/blood , Female , HEK293 Cells , Humans , Liver Failure/blood , Male , Middle Aged , Receptors, G-Protein-Coupled/genetics
...