Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311253, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456580

RESUMEN

A highly viable alternative to lithium-ion batteries for stationary electrochemical energy-storage systems is the potassium dual-ion hybrid capacitor (PIHC), especially toward fast-charging capability. However, the sluggish reaction kinetics of negative electrode materials seriously impedes their practical implementation. In this paper, a new negative electrode Bi@RPC (Nano-bismuth confined in nitrogen- and oxygen-doped carbon with rationally designed pores, evidenced by advanced characterization) is developed, leading to a remarkable electrochemical performance. PIHCs building with the active carbon YP50F positive electrode result in a high operation voltage (0.1-4 V), and remarkably well-retained energy density at a high-power density (11107 W kg-1 at 98 Wh kg-1 ). After 5000 cycles the proposed PHICs still show a superior capacity retention of 92.6%. Moreover, a reversible mechanism of "absorption-alloying" of the Bi@RPC nanocomposite is revealed by operando synchrotron X-ray diffraction and Raman spectroscopy. With the synergistic potassium ions storage mechanism arising from the presence of well-structured pores and nano-sized bismuth, the Bi@RPC electrode exhibits an astonishingly rapid kinetics and high energy density. The results demonstrate that PIHCs with Bi@RPC-based negative electrode is the promising option for simultaneously high-capacity and fast-charging energy storage devices.

2.
Adv Mater ; 36(19): e2313621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38316395

RESUMEN

Rechargeable aqueous zinc batteries are potential candidates for sustainable energy storage systems at a grid scale, owing to their high safety and low cost. However, the existing cathode chemistries exhibit restricted energy density, which hinders their extensive applications. Here, a tellurium redox-amphoteric conversion cathode chemistry is presented for aqueous zinc batteries, which delivers a specific capacity of 1223.9 mAh gTe -1 and a high energy density of 1028.0 Wh kgTe -1. A highly concentrated electrolyte (30 mol kg-1 ZnCl2) is revealed crucial for initiating the Te redox-amphoteric conversion as it suppresses the H2O reactivity and inhibits undesirable hydrolysis of the Te4+ product. By carrying out multiple operando/ex situ characterizations, the reversible six-electron Te2-/Te0/Te4+ conversion with TeCl4 is identified as the fully charged product and ZnTe as the fully discharged product. This finding not only enriches the conversion-type battery chemistries but also establishes a critical step in exploring redox-amphoteric materials for aqueous zinc batteries and beyond.

3.
Chemphyschem ; 25(8): e202300833, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38289035

RESUMEN

Biomass-based materials have emerged as a promising alternative to the conventional graphite anode in Li-ion batteries due to their renewability, low cost, and environmental friendliness. Therefore, a facile synthesis method for porous hard carbons based on cellulose acetate microspheres and bead cellulose is used, and their application as anode materials in Li-ion batteries is discussed. The resulting porous carbons exhibit promising electrochemical characteristics, including a reversible capacity of about 300 mAh g-1 at 0.1 C (37 mA g-1) after 50 cycles, and stable capacities up to 210 mAh g-1 over 1000 cycles at 1 C (372 mA g-1) in half-cells for cellulose acetate microspheres carbonised at 1200 °C. Moreover, at 60 °C cellulose-derived carbons show higher specific capacities than graphite (300 mAh g-1 vs 240 mAh g-1 at 1 C after 500 cycles), indicating their potential for use in high-temperature applications. The different charge storage mechanisms of the prepared hard carbon materials and graphite are observed. While capacity of graphite is mainly controlled by the Faradaic redox process, the cellulose-derived carbons combine Faradaic intercalation and capacitive charge adsorption.

4.
Chem Commun (Camb) ; 59(92): 13763-13766, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37920906

RESUMEN

Na2Fe2Se2O with the I4/mmm space group was studied in sodium-ion batteries, delivering a reversible specific capacity of more than 140 mA h g-1. Operando XRD and XAS studies disclosed bifunctional redox behaviour with the prevalence of anionic electrochemical activity and a likely partial decomposition of the material, which, however, does not influence the electrochemical behaviour of the system.

5.
Antioxidants (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38001863

RESUMEN

In recent years, there has been a focus on breeding wheat with high anthocyanin levels in order to improve food quality and human health. The objective of this study was to examine the antioxidant and geroprotective properties of wheat bran extracts using both in vitro and in vivo research methods. Two wheat lines were used: one with uncolored pericarp (anthocyanin-free) and another with colored pericarp (anthocyanin-containing). These lines differed in a specific region of chromosome 2A containing the Pp3/TaMyc1 gene, which regulates anthocyanin production. High-performance liquid chromatography-mass spectrometry revealed the presence of cyanidin glucoside and cyanidin arabinoside in the anthocyanin-containing wheat bran extract (+AWBE), while no anthocyanins were found in the anthocyanin-free wheat bran extract (-AWBE). The +AWBE showed higher radical scavenging activity (DPPH and ABTS assays) and membrane protective activity (AAPH oxidative hemolysis model) compared to the -AWBE. Both extracts extended the lifespan of female Drosophila, indicating geroprotective properties. This study demonstrates that wheat bran extracts with high anthocyanin levels have antioxidant and geroprotective effects. However, other secondary metabolites in wheat bran can also contribute to its antioxidant and geroprotective potential.

6.
Small ; 19(35): e2301546, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37186448

RESUMEN

Laser reduction of graphene oxide (GO) with direct-write technology is promising to develop miniaturized energy storage devices because of highly flexible, mask-free, and chemical-free merits. However, laser reduction of GO is often accompanied with deflagration (spectacular and violent deoxygenating reaction), leading reduced graphene oxide (rGO) films into brittle and irregular internal structure which is harmful to the applications. Here, a pre-reduction strategy is demonstrated to avoid this deflagration and realize a uniform laser-reduced GO (LrGO) matrix for the application of flexible micro-supercapacitors (MSCs).The pre-reduction process with ascorbic acid decreases the content of oxygen-containing functional groups on GO in advance, and thus relieves gases emission and avoids unconstrained expansion during the laser reduction process. In addition, a self-assembled skeleton with pre-reduced GO (PGO) nanosheets could be constructed which is a more appropriate aforehand framework for laser reduction to establish controllable rGO films with the homogenous porosity. The quasi-solid-state MSCs assembled with laser-reduced PGO exhibit the maximum areal capacitance of 88.32 mF cm-2 , good cycling performance (capacitance retention of 82% after 2000 cycles), and outstanding flexibility (no capacitance degradation after bending for 5000 times). This finding provides opportunities to enhance quality of LrGO which is promising for micro-power devices and beyond.

7.
Adv Mater ; 34(15): e2108682, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35148441

RESUMEN

2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus-oxygen terminals can be an attractive strategy for Nb4 C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2 - display a metaphosphate-like configuration with each P atom sustaining three PO bonds and one PO dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4 C3 (denoted PO2 -Nb4 C3 ) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+ -diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4 C3 , PO2 -Nb4 C3 exhibits a doubled Na+ -storage capacity (221.0 mAh g-1 ), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy-power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy-power tradeoff typical for energy-storage devices.

8.
ACS Appl Mater Interfaces ; 13(37): 44470-44478, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34515465

RESUMEN

Li and Mn-rich nickel cobalt manganese oxide (LMR-NCM) is one of the most promising cathode materials for realizing next-generation Li-ion batteries due to its high specific capacity of >250 mA h g-1 and operating potential > 4.5 V. Nevertheless, being plagued by severe capacity fading and voltage decay, the commercialization of LMR-NCM appears to be a distant goal. The anionic activity of oxygen and associated phase transformations are the reasons behind the unstable electrochemical performance. The tendency of LMR-NCM to react with CO2 and moisture further makes it prone to interfacial instability and degradation. Here, we report a neoteric method to mitigate the stability issues and improve the electrochemical performance of LMR-NCM by changing the electronic configuration of constituting O and transition metals via diethylzinc-assisted atomic surface reduction (Zn-ASR) using an extremely facile protocol. With the proposed Zn-ASR, a 2-3 nm thin layer of a reduced surface enriched with complex ZnOx or ZnOxRy was obtained on the LMR-NCM particles. X-ray photoelectron spectroscopy suggested the transfer of ethyl groups of diethylzinc to O atoms on the LMR-NCM surface, which ultimately led to the reduction of near-surface Mn and Ni atoms and impeded irreversible anionic activity. The presence of ZnOx/ZnOxRy also resulted in superior charge transfer and resistance against HF. As a result, in contrast to LMR-NCM, the Zn-ASR-treated sample exhibited substantially improved rate capabilities, facilitated charge transfer, enhanced capacity retention, reduced parasitic reactions, and long-term stability as reflected from in-depth electrochemical analysis, in operando gaseous evolution studies, and post-mortem microscopic analysis.

9.
Adv Mater ; 33(34): e2101342, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34245051

RESUMEN

Prussian blue analogues (PBAs) are reported to be efficient sodium storage materials because of the unique advantages of their metal-organic framework structure. However, the issues of low specific capacity and poor reversibility, caused by phase transitions during charge/discharge cycling, have thus far limited the applicability of these materials. Herein, a new approach is presented to substantially improve the electrochemical properties of PBAs by introducing high entropy into the crystal structure. To achieve this, five different metal species are introduced, sharing the same nitrogen-coordinated site, thereby increasing the configurational entropy of the system beyond 1.5R. By careful selection of the elements, high-entropy PBA (HE-PBA) presents a quasi-zero-strain reaction mechanism, resulting in increased cycling stability and rate capability. The key to such improvement lies in the high entropy and associated effects as well as the presence of several active redox centers. The gassing behavior of PBAs is also reported. Evolution of dimeric cyanogen due to oxidation of the cyanide ligands is detected, which can be attributed to the structural degradation of HE-PBA during battery operation. By optimizing the electrochemical window, a Coulombic efficiency of nearly 100% is retained after cycling for more than 3000 cycles.

10.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803524

RESUMEN

Rechargeable aqueous Zn-ion batteries (ZIBs) have gained great attention due to their high safety and the natural abundance of Zn. Unfortunately, the Zn metal anode suffers from dendrite growth due to nonuniform deposition during the plating/stripping process, leading to a sudden failure of the batteries. Herein, Cu coated Zn (Cu-Zn) was prepared by a facile pretreatment method using CuSO4 aqueous solution. The Cu coating transformed into an alloy interfacial layer with a high affinity for Zn, which acted as a nucleation site to guide the uniform Zn nucleation and plating. As a result, Cu-Zn demonstrated a cycling life of up to 1600 h in the symmetric cells and endowed a stable cycling performance with a capacity of 207 mAh g-1 even after 1000 cycles in the full cells coupled with a V2O5-based cathode. This work provides a simple and effective strategy to enable uniform Zn deposition for improved ZIBs.

11.
ACS Appl Mater Interfaces ; 13(14): 16869-16875, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784067

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are considered as a promising energy storage system due to their low cost and high safety merits. However, they suffer from the challenge of uncontrollable dendrite growth due to a non-uniform zinc deposition, which increases internal resistance and causes battery failure. Herein, Ag coating fabricated by a facile surface chemistry route on zinc metal was developed to guide uniform zinc deposition. Ag-coated Zn shows improved electrolyte wettability, a small zinc deposition overpotential, and fast kinetics for zinc deposition/dissolution. Direct optical visualization and scanning electron microscopy images show uniform zinc deposition due to the introduction of Ag coating. As a result, the Ag-coated Zn anode can sustain up to 1450 h of repeated plating/stripping with a low overpotential in symmetric cells at a current density of 0.2 mA cm-2, while an improved performance is realized for full cells paired with a V2O5-based cathode. This work provides a facile and effective approach to improve the electrochemical performance of ZIBs.

12.
ACS Appl Mater Interfaces ; 13(5): 6309-6321, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33527829

RESUMEN

We studied the structural evolution and cycling behavior of TiNb2O7 (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, composed of a Mg-metal anode, and a dual-salt APC-LiCl electrolyte with Li and Mg cations. Theoretical calculations show that Li intercalation is predominant over Mg intercalation into the TNO in a dual-salt electrolyte with Mg2+ and Li+, while experimentally up to 20% Mg cointercalation was observed after battery discharge. In hybrid Mg-Li batteries, TNO shows capacities which are about 40 mA h g-1 lower than in single-ion Li batteries at current densities of up to 1.2 A g-1. This is likely due to a partial Mg cointercalation or/and location of Li cations on alternative crystallographic sites in the TNO structure in comparison to the Li-intercalation process in Li batteries. Generally, hybrid Mg-Li cells show a markedly superior applicability for a very prolonged operation (above 1000 cycles) with 100% Coulombic efficiency and a capacity retention higher than 95% in comparison to conventional Li batteries with TNO after being cycled either under a low (7.75 mA g-1) or high (1.55 A g-1) current density. The better long-term behavior of the hybrid Mg-Li batteries with TNO is especially pronounced at 60 °C. The reasons for this are an appropriate cathode electrolyte interface containing MgCl2 species and a superior performance of the Mg anode in APC-LiCl electrolytes with a dendrite-free, fast Mg deposition/stripping. This stable interface stands in contrast to the anode electrolyte interface in Li batteries with a Li anode in conventional carbonate-containing electrolytes, which is prone to dendrite formation, thus leading to a battery shortcut.

13.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011318

RESUMEN

Na9V14O35 (η-NaxV2O5) has been synthesized via solid-state reaction in an evacuated sealed silica ampoule and tested as electroactive material for Na-ion batteries. According to powder X-ray diffraction, electron diffraction and atomic resolution scanning transmission electron microscopy, Na9V14O35 adopts a monoclinic structure consisting of layers of corner- and edge-sharing VO5 tetragonal pyramids and VO4 tetrahedra with Na cations positioned between the layers, and can be considered as sodium vanadium(IV,V) oxovanadate Na9V104.1+O19(V5+O4)4. Behavior of Na9V14O35 as a positive and negative electrode in Na half-cells was investigated by galvanostatic cycling against metallic Na, synchrotron powder X-ray diffraction and electron energy loss spectroscopy. Being charged to 4.6 V vs. Na+/Na, almost 3 Na can be extracted per Na9V14O35 formula, resulting in electrochemical capacity of ~60 mAh g-1. Upon discharge below 1 V, Na9V14O35 uptakes sodium up to Na:V = 1:1 ratio that is accompanied by drastic elongation of the separation between the layers of the VO4 tetrahedra and VO5 tetragonal pyramids and volume increase of about 31%. Below 0.25 V, the ordered layered Na9V14O35 structure transforms into a rock-salt type disordered structure and ultimately into amorphous products of a conversion reaction at 0.1 V. The discharge capacity of 490 mAh g-1 delivered at first cycle due to the conversion reaction fades with the number of charge-discharge cycles.

14.
ACS Appl Mater Interfaces ; 12(48): 53827-53840, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201669

RESUMEN

Electrode materials with a high performance and stable cycling have been commercialized, but the utilization of state-of-the-art Li-ion batteries in high-current rate applications is restricted because of limitations in other battery components, in particular, the lack of an efficient binder. Herein, a novel multicomponent polymer gel binder (PGB) is presented, comprising the biopolymer chitosan as the host, embedded with the 1-butyl-1-methylpyrrolidinium dicyanamide (PYR14DCA) ionic liquid and the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The multicomponent approach leads to carbon black arrangement along well-distributed chitosan chains in the electrodes, forming a highly electronic conductive network. Furthermore, the plasticizing effect of the ionic liquid leads to an enhanced ionic conductivity. As a result, shorter charge-transfer paths are enabled, leading to an exceptionally high rate capability in LiFePO4 and Li4Ti5O12 half cells, up to 50C. LiFePO4||Li4Ti5O12 full cells using the PGB for both electrodes also demonstrated stable cycling at 10C, with an impressively high discharge capacity of 173 mA h·g-1 after 1000 cycles. In addition, freestanding electrodes could also be realized and functioning flexible Li-ion cells were successfully demonstrated. Thus, the novel water-processable binder offers multifaceted advantages, making the approach highly promising for industrial implementation.

15.
Inorg Chem ; 59(21): 15626-15635, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33047957

RESUMEN

A series of solid solutions (Li2Fe1-yMny)SO with a cubic antiperovskite structure was successfully synthesized. The composition (Li2Fe0.5Mn0.5)SO was intensively studied as a cathode in Li-ion batteries showing a reversible specific capacity of 120 mA h g-1 and almost a 100% Coulombic efficiency after 50 cycles at 0.1C meaning extraction/insertion of 1 Li per formula unit during 10 h. Operando X-ray absorption spectroscopy confirmed the redox activity of both Fe2+ and Mn2+ cations during battery charge and discharge, while operando synchrotron X-ray diffraction studies revealed a reversible formation of a second isostructural phase upon Li-removal and insertion at least for the first several cycles. In comparison to (Li2Fe)SO, the presence of Mn stabilizes the crystal structure of (Li2Fe0.5Mn0.5)SO during battery operation, although post mortem TEM studies confirmed a gradual amorphization after 50 cycles. A lower specific capacity of (Li2Fe0.5Mn0.5)SO in comparison to (Li2Fe)SO is probably caused by slower kinetics, especially in the two-phase region, as confirmed by Li-diffusion coefficient measurements.

16.
Mater Sci Eng C Mater Biol Appl ; 117: 111305, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919666

RESUMEN

The present work introduces combination of superparamagnetic iron oxides (SPIONs) and hexamolybdenum cluster ([{Mo6I8}I6]2-) units within amino-decorated silica nanoparticles (SNs) as promising design of the hybrid SNs as efficient cellular contrast and therapeutic agents. The heating generated by SNs doped with SPIONs (Fe3O4@SNs) under alternating magnetic field is characterized by high specific absorption rate (SAR = 446 W/g). The cluster units deposition onto both Fe3O4@SNs and "empty" silica nanoparticles (SNs) results in Fe3O4@SNs[{Mo6I8}I6] and SNs[{Mo6I8}I6] with red cluster-centered luminescence and ability to generate reactive oxygen species (ROS) under the irradiation. The monitoring of spin-trapped ROS by ESR spectroscopy technique indicates that the ROS-generation decreases in time for SNs[{Mo6I8}I6] and [{Mo6I8}I6]2- in aqueous solutions, while it remains constant for Fe3O4@SNs[{Mo6I8}I6]. The cytotoxicity is low for both Fe3O4@SNs[{Mo6I8}I6] and SNs[{Mo6I8}I6], while the flow cytometry indicates preferable cellular uptake of the former versus the latter type of the nanoparticles. Moreover, entering into nucleus along with cytoplasm differentiates the intracellular distribution of Fe3O4@SNs[{Mo6I8}I6] from that of SNs[{Mo6I8}I6], which remain in the cell cytoplasm only. The exceptional behavior of Fe3O4@SNs[{Mo6I8}I6] is explained by residual amounts of iron ions at the silica surface.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Hierro , Luminiscencia , Especies Reactivas de Oxígeno , Dióxido de Silicio
17.
ACS Appl Mater Interfaces ; 12(33): 37227-37238, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32687305

RESUMEN

Lithium-ion batteries (LIBs) are nowadays widely used in many energy storage devices, which have certain requirements on size, weight, and performance. State-of-the-art LIBs operate very reliably and with good performance under restricted and controlled conditions but lack in efficiency and safety when these conditions are exceeded. In this work, the influence of outranging conditions in terms of charging rate and operating temperature on electrochemical characteristics was studied on the example of lithium titanate (Li4Ti5O12, LTO) electrodes. Structural processes in the electrode, cycled with ultrafast charge and discharge, were evaluated by operando synchrotron powder diffraction and ex situ X-ray absorption spectroscopy. On the basis of the Rietveld refinement, it was shown that the electrochemical storage mechanism is based on the Li-intercalation process at least up to current rates of 5C, meaning full battery charge within 12 min. For applications at temperatures between -30 and 60 °C, four carbonate-based electrolyte systems with different additives were tested for cycling performance in half-cells with LTO and metallic lithium as electrodes. It was shown that the addition of 30 wt % [PYR14][PF6] to the conventional LP30 electrolyte, usually used in LIBs, significantly decreases its melting point, which enables the successful low-temperature application at least down to -30 °C, in contrast to LP30, which freezes below -10 °C, making battery operation impossible. Moreover, at elevated temperatures up to 60 °C, batteries with the LP30/[PYR14][PF6] electrolyte exhibit stable long-term cycling behavior very close to LP30. Our findings provide a guideline for the application of LTO in LIBs beyond conventional conditions and show how to overcome limitations by designing appropriate electrolytes.

18.
Inorg Chem ; 59(13): 9108-9115, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32543185

RESUMEN

Phase transformations upon delithiation in layered oxides with the NaCrS2 structure type are widely studied for numerous combinations of 3d transition metals because of the application of LiCoO2 and its derivatives as cathode materials in rechargeable Li-ion batteries. However, complete replacement of 3d by 4d transition metals still yields phenomena never seen in compounds containing 3d metals only. In the present work, the structural evolution of Li-rich O3-Li(Li0.2Rh0.8)O2, having a mixed occupancy of 20% Li and 80% Rh in the metal-O slabs, was studied during electrochemical Li removal and insertion and compared with the isostructural stoichiometric LiRhO2. The latter compound undergoes a transformation from the layered NaCrS2 to the tunnel-like rutile-ramsdellite intergrowth structure of the γ-MnO2 type. Partial replacement of Rh by Li, in contrast, completely prevents this transition, resulting in a reversible cell expansion and shrinkage within the layered structure upon (de)lithiation. Moreover, no anomalously short Rh-O and O-O distances were observed in Lix≈0(Li0.2Rh0.8)O2 with the Rh4.75+ intermediate valence state at 4.8 V, in contrast to Lix≈0RhO2 with Rh4+ at 4.2 V, as confirmed by operando synchrotron X-ray diffraction and extended X-ray absorption fine structure studies. We believe that the difference in the Li-O and Rh-O covalency is responsible for the observed structural stabilization. The longer and more ionic Li-O bonds in the (Li,Rh)O2 layers impede the shortening of O-O distances needed for transformation to the γ-MnO2 type because of a higher negative charge on O anions connected to Li cations and the stronger electrostatic repulsion between them.

19.
ACS Appl Mater Interfaces ; 11(37): 33923-33930, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31449390

RESUMEN

O3-type layered NaNi0.5Ti0.5O2, which has been reported previously as a promising cathode material for Na-ion batteries, has been characterized using comprehensive operando techniques combined with electrochemical and magnetization measurements. Operando Synchrotron diffraction revealed a reversible O3-P3 transformation during charge and discharge without any intermediate phases, which stands in contrast to NaNiO2 and NaNi0.5Mn0.5O2. Operando X-ray absorption studies showed that the electrochemical process in the potential window of 1.5-4.2 V vs Na+/Na is sustained exclusively by Ni oxidation and reduction while Ti remains inactive. These findings are further supported by ex situ magnetization measurements, yielding a lower paramagnetic moment in the charged state in agreement with Ni oxidation. On the basis of these insights, we elaborate on the beneficial stabilizing effect of Ti. However, a strong C-rate dependence for NaNi0.5Ti0.5O2 and NaNi0.5Mn0.5O2 during cycling known from the literature points at a rather high influence of the original structure stacking and the associated Na migration paths.

20.
ACS Appl Mater Interfaces ; 10(42): 36108-36119, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30251827

RESUMEN

Two new structural forms of Na xCo0.5Ti0.5O2, the layered O3- and P3-forms, were synthesized and comprehensively characterized. Both materials show electrochemical activity as electrodes in Na-ion batteries. During cell charging (desodiation of the Na xCo0.5Ti0.5O2 cathode), we observed a structural phase transformation of O3-Na0.95Co0.5Ti0.5O2 into P3-Na xCo0.5Ti0.5O2, whereas no changes other than conventional unit cell volume shrinkage were detected for P3-Na0.65Co0.5Ti0.5O2. During Na insertion (cell discharging), the reconversion of the P3-form into O3-Na xCo0.5Ti0.5O2 was impeded for both materials and occurs well below 1 V versus Na+/Na only. The reconversion is hindered by the charge and spin transfers of Co (LS-Co3+ → HS-Co2+) and by a significant unit cell volume expansion at the P3 → O3 transformation, as revealed from the magnetization, crystallographic, and spectroscopic studies. As the kinetics of such transformations depend on numerous parameters such as time, temperature, and particle size, a large cell overpotential ensues. An extended cutoff voltage at 0.2 V versus Na+/Na during discharging allows to complete the P3 → O3 transformation and increases the specific discharging capacity to 200 mA h g-1. Moreover, a quasi-symmetrical full cell, based on the O3- and P3-forms, was designed, eliminating safety concerns associated with sodium anodes and delivering a discharge capacity of 130 mA h g-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...