Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Am Chem Soc ; 146(18): 12463-12472, 2024 May 08.
Article En | MEDLINE | ID: mdl-38626915

Flexible and twisted annulated π-systems exhibit numerous unique and desirable features, owing to their ability to display chirality. However, preventing their racemization due to the dynamic nature of their chirality remains a challenge. One promising approach to stabilize homochirality in such systems is chirality transfer from a chiral auxiliary to a moiety displaying dynamic chirality. Herein, we introduce a new approach for dynamic chirality stabilization in conformationally flexible azahelicene species via crystallization-induced intermolecular chirality transfer in Au(I) complexes featuring azahelicene (dibenzo[c,g]carbazole and benzo[c]carbazole) and enantio-pure chiral N-heterocyclic carbene (NHC) ligands with a complementary tailored shape. Crystallization of these azahelicene Au(I) complexes not only suppresses the dynamic chirality of the dibenzocarbazole species but also stabilizes their homochirality through the intermolecular conjunction between the chiral NHC and dibenzocarbazole ligands. In the Au(I) benzocarbazole complexes, the intermolecular conjunction and chirality transfer in the crystals induce chirality in the initially achiral benzocarbazole ligand. Furthermore, the crystallization of the studied complexes activates their circularly polarized luminescence (CPL) properties, which were suppressed in solution. Importantly, chirality transfer leads to significant CPL enhancement; the complexes that feature chirality transfer within the crystal structure exhibit luminescence dissymmetry factors 5 to 10 times higher than those of the complexes without chirality transfer.

2.
J Am Chem Soc ; 145(50): 27512-27520, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38060534

We report that a newly developed type of triaryltriazine rotor, which bears bulky silyl moieties on the para position of its peripheral phenylene groups, forms a columnar stacked clutch structure in the crystalline phase. The phenylene units of the crystalline rotors display two different and interconvertible correlated molecular motions. It is possible to switch between these intermolecular geared rotational motions via a thermally induced crystal-to-crystal phase transition. Variable-temperature solid-state 2H NMR measurements and X-ray diffraction studies revealed that the crystalline rotor is characterized by a vertically stacked columnar structure upon introducing a bulky Si moiety with bent geometry as the stator. The structure exhibits correlated flapping motions via a combination of 85° and ca. 95° rotations between 295 and 348 K, concurrent with a negative entropy change (ΔS‡ = -23 ± 0.3 cal mol-1 K-1). Interestingly, heating the crystal beyond 348 K induces an anisotropic expansion of the column and lowers the steric congestion between the adjacent rotators, thus altering the correlated motions from a flapping motion to a correlated 2-fold 180° rotation with a lower entropic penalty (ΔS‡ = -14 ± 0.5 cal mol-1 K-1). The obtained results of our study suggest that the intermolecular stacking of the C3-symmetric rotator driven by the steric repulsion of the bulky stator represents a promising strategy for producing various correlated molecular motions in the crystalline phase. Moreover, direct and reversible modulation of the intermolecularly correlated rotation is achieved via a thermally induced crystal-to-crystal phase transition, which operates as a gearshift function at the molecular level.

3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37686131

2,3,5,6-Tetramethyl-1,4-diisocyanobenzene (1), 1,4-diisocyanobenzene (2), and 1,4-dicyanobenzene (3) were co-crystallized with 1,3,5-triiodotrifluorobenzene (1,3,5-FIB) to give three cocrystals, 1·1,3,5-FIB, 2·2(1,3,5-FIB), and 3·2(1,3,5-FIB), which were studied by X-ray diffraction. A common feature of the three structures is the presence of I···Cisocyanide or I···Nnitrile halogen bonds (HaBs), which occurs between an iodine σ-hole and the isocyanide C-(or the nitrile N-) atom. The diisocyanide and dinitrile cocrystals 2·2(1,3,5-FIB) and 3·2(1,3,5-FIB) are isostructural, thus providing a basis for accurate comparison of the two types of noncovalent linkages of C≡N/N≡C groups in the composition of structurally similar entities and in one crystal environment. The bonding situation was studied by a set of theoretical methods. Diisocyanides are more nucleophilic than the dinitrile and they exhibit stronger binding to 1,3,5-FIB. In all structures, the HaBs are mostly determined by the electrostatic interactions, but the dispersion and induction components also provide a noticeable contribution and make the HaBs attractive. Charge transfer has a small contribution (<5%) to the HaB and it is higher for the diisocyanide than for the dinitrile systems. At the same time, diisocyanide and dinitrile structures exhibit typical electron-donor and π-acceptor properties in relation to the HaB donor.


Cyanides , Iodine , Halogens , Nitriles
4.
Chem Sci ; 14(17): 4485-4494, 2023 May 03.
Article En | MEDLINE | ID: mdl-37152261

Among the known types of non-covalent interactions with a Au(i) metal center, Au(i) involving halogen bonding (XB) remains a rare phenomenon that has not been studied systematically. Herein, using five N-heterocyclic carbene (NHC) Au(i) aryl complexes and two iodoperfluoroarenes as XB donors, we demonstrated that the XB involving the Au(i) metal center can be predictably obtained for neutral Au(i) complexes using the example of nine co-crystals. The presence of XB involving the Au(i) center was experimentally investigated by single-crystal X-ray diffraction and solid-state 13C CP-MAS NMR methods, and their nature was elucidated through DFT calculations, followed by electron density, electrostatic potential, and orbital analyses. The obtained results revealed a connection between the structure and HOMO localization of Au(i) complexes as XB acceptors, and the geometrical, electronic, and spectroscopic features of XB interactions, as well as the supramolecular structure of the co-crystals.

5.
Chem Asian J ; 18(7): e202300037, 2023 Apr 03.
Article En | MEDLINE | ID: mdl-36807544

Co-crystallization of 180°-orienting σ-hole-accepting tectons, namely, 1,4-diisocyanobenzene (1) and 1,4-diisocyanotetramethylbenzene (2), with such homoditopic halogen bond donors as 1,4-diiodotetrafluorobenzene (1,4-FIB) and 4,4'-diiodoperfluorobiphenyl (4,4'-FIBP) afforded co-crystals 1 ⋅ 1,4-FIB, 1 ⋅ 4,4'-FIBP, and 2 ⋅ 1,4-FIB. Their solid-state structures exhibit 1D-supramolecular arrangements, which are based on poorly explored I⋅⋅⋅C halogen bonding; this study is the first in which the supramolecular assembly utilizing halogen bonding with a terminal C atom was performed. The use of the potentially tetrafunctional σ-hole accepting tetraiodoethylene (TIE) leads to supramolecular architecture of a higher dimension, 3D-framework, observed in the structure of 1 ⋅ TIE. DFT calculations, used to characterize the halogen bonding situation, revealed that the I⋅⋅⋅C non-covalent interactions are moderately strong, ranging from -4.07 in 1 ⋅ TIE to -5.45 kcal/mol in 2 ⋅ 1,4-FIB. The NBO analysis disclosed that LP(C)→σ* charge transfer effects are relevant in all co-crystals.

6.
Dalton Trans ; 50(42): 14994-14999, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34693947

C,N-Chelate deprotonated diaminocarbene platinum(II) complexes were synthesized by coupling coordinated isocyanides and azinyl-substituted ureas. The complexes act as catalysts of α,ω-divinylpolydimethylsiloxane and poly(dimethylsiloxane-co-methylhydrosiloxane) hydrosilylation cross-linking. Silicone rubbers obtained with (aminoisoquinoline)-containing complex 3d exhibit temperature-responsive luminescence. Their emission changes irreversibly when heated from 80-100 °C (green radiation) to 120 °C or more (blue radiation).

7.
Molecules ; 26(18)2021 Sep 18.
Article En | MEDLINE | ID: mdl-34577142

A series of N-pyridyl ureas bearing 1,2,4- (1a, 2a, and 3a) and 1,3,4-oxadiazole moiety (1b, 2b, 3b) was prepared and characterized by HRMS, 1H and 13C NMR spectroscopy, as well as X-ray diffraction. The inspection of the crystal structures of (1-3)a,b and the Hirshfeld surface analysis made possible the recognition of the (oxadiazole)···(pyridine) and (oxadiazole)···(oxadiazole) interactions. The presence of these interactions was confirmed theoretically by DFT calculations, including NCI analysis for experimentally determined crystal structures as well as QTAIM analysis for optimized equilibrium structures. The preformed database survey allowed the verification of additional examples of relevant (oxadiazole)···π interactions both in Cambridge Structural Database and in Protein Data Bank, including the cocrystal of commercial anti-HIV drug Raltegravir.


Oxadiazoles , Crystallography, X-Ray , Databases, Factual , Hydrogen Bonding , Models, Molecular
8.
Nat Commun ; 11(1): 2921, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-32523100

Predominantly, carbon atoms of various species function as acceptors of noncovalent interactions when they are part of a π-system. Here, we report on the discovery of a halogen bond involving the isocyano carbon lone pair. The co-crystallization or mechanochemical liquid-assisted grinding of model mesityl isocyanide with four iodoperfluorobenezenes leads to a series of halogen-bonded adducts with isocyanides. The obtained adducts were characterized by single-crystal and powder X-ray diffraction, solid-state IR and 13C NMR spectroscopies, and also by thermogravimetric analysis. The formation of the halogen bond with the isocyano group leads to a strong reduction of the isocyanide odor (3- to 46-fold gas phase concentration decrease). This manipulation makes isocyanides more suitable for laboratory storage and usage while preserving their reactivity, which is found to be similar between the adducts and the parent isocyanide in some common transformations, such as ligation to metal centers and the multi-component Ugi reaction.

9.
Angew Chem Int Ed Engl ; 57(39): 12785-12789, 2018 Sep 24.
Article En | MEDLINE | ID: mdl-30075056

In the current study, we evaluated the solubility of a number of organometallic species and showed that it is noticeably improved in diiodomethane when compared to other haloalkane solvents. The better solvation properties of CH2 I2 were associated with the substantially better σ-hole-donating ability of this solvent, which results in the formation of uniquely strong solvent-(metal complex) halogen bonding. The strength of the halogen bonding is attenuated by the introduction of additional halogen atoms in the organometallic species owing to the competitive formation of more favourable intermolecular complex-complex halogen bonding. The exceptional solvation properties of diiodomethane and its inertness towards organometallic species make this solvent a good candidate for NMR studies, in particular, for the acquisition of spectra of insensitive spins.

10.
Inorg Chem ; 57(11): 6722-6733, 2018 Jun 04.
Article En | MEDLINE | ID: mdl-29792332

The reaction of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with the aminoazoles [1 H-imidazol-2-amine (1), 4 H-1,2,4-triazol-3-amine (2), 1 H-tetrazol-5-amine (3), 1 H-benzimidazol-2-amine (4), 1-alkyl-1 H-benzimidazol-2-amines, where alkyl = Me (5), Et (6)] in a 2:1 ratio in the presence of a base in CHCl3 at RT proceeds regioselectively and leads to the binuclear diaminocarbene complexes [(ClPdCNXyl)2{µ-C(N-azolyl)N(Xyl)C═NXyl}] (7-12; 73-91%). Compounds 7-12 were characterized by C, H, N elemental analyses, high-resolution ESI+-MS, Fourier transform infrared spectroscopy, 1D (1H, 13C) and 2D (1H,1H-COSY, 1H,1H-NOESY, 1H,13C-HSQC, 1H,13C-HMBC) NMR spectroscopies, and X-ray diffraction (XRDn). Inspection of the XRDn data and results of the Hirshfeld surface analysis suggest the presence in all six structures of intramolecular π-holeisocyanide···πarene interactions between the electrophilic C atom of the isocyanide moiety and the neighboring arene ring. These interactions also result in distortion of the Pd-C≡N-Xyl fragment from the linearity. Results of density functional theory calculations [M06/MWB28 (Pd) and 6-31G* (other atoms) level of theory] for model structures of 7-9 followed by the topological analysis of the electron density distribution within the framework of Bader's theory (QTAIM method) reveal the presence of these weak interactions also in a CHCl3 solution, and their calculated strength is 1.9-2.2 kcal/mol. The natural bond orbital analysis of 7-9 revealed that π(C-C)Xyl → π*(C-N)isocyanide charge transfer (CT) takes place along with the intramolecular π-holeisocyanide···πarene interactions. The observed π(C-C)Xyl → π*(C-N)isocyanide CT is due to ligation of the isocyanide to the metal center, whereas in the cases of the uncomplexed p-CNC6H4NC and CNXyl species, the effects of CT are negligible. Available CCDC data were processed from the perspective of isocyanide-involving π-hole···π interactions, disclosed the role of metal coordination in the π-hole donor ability of isocyanides, and verified the π-holeisocyanide···πarene interaction effect on the stabilization of the in-conformation in metal-bound acyclic diaminocarbenes.

11.
Inorg Chem ; 57(6): 3420-3433, 2018 Mar 19.
Article En | MEDLINE | ID: mdl-29488765

The reaction of cis-[PdCl2(CNCy)2] (1) with thiazol-2-amines (2-10) leads to the C,N-chelated diaminocarbene-like complexes [PdCl{ C(N(H)4,5-R2-thiazol-2-yl)NHCy}(CNCy)] (11-14; 82-91%) in the case of 4,5-R2-thiazol-2-amines (R, R = H, H (2), Me, Me (3), -(CH2)4- (4)) and benzothiazol-2-amine (5) or gives the diaminocarbene species cis-[PdCl2{C(N(H)Cy)N(H)4-R-thiazol-2-yl}(CNCy)] (15-19; 73-93%) for the reaction with 4-aryl-substituted thiazol-2-amines (R = Ph (6), 4-MeC6H4 (7), 4-FC6H4 (8), 4-ClC6H4 (9), 3,4-F2C6H3 (10)). Inspection of the single-crystal X-ray diffraction data for 15-17 and 19 suggests that the structures of all these species exhibit previously unrecognized bifurcated chalcogen-hydrogen bonding µ(S,N-H)Cl and also PdII···PdII metallophilic interactions. These noncovalent interactions collectively connect two symmetrically located molecules of 15-17 and 19, resulting in their solid-state dimerization. The existence of the µ(S,N-H)Cl system and its strength (6-9 kcal/mol) were additionally verified/estimated by a Hirshfeld surface analysis and DFT calculations combined with a topological analysis of the electron density distribution within the formalism of Bader's theory (AIM method) and NBO analysis. The observed noncovalent interactions are jointly responsible for the dimerization of 15-19 not only in the solid phase but also in CHCl3 solutions, as predicted theoretically by DFT calculations and confirmed experimentally by FTIR, HRESI-MS, 1H NMR, and diffusion coefficient NMR measurements. Available CCDC data were processed under the new moiety angle, and the observed µ(S,E-H)Cl systems were classified accordingly to E (E = N, O, C) type atoms.

12.
J Am Chem Soc ; 138(42): 14129-14137, 2016 Oct 26.
Article En | MEDLINE | ID: mdl-27700082

The reaction of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with various 1,3-thiazol- and 1,3,4-thiadiazol-2-amines in chloroform gives a mixture of two regioisomeric binuclear diaminocarbene complexes. For 1,3-thiazol-2-amines the isomeric ratio depends on the reaction conditions and kinetically (KRs) or thermodynamically (TRs) controlled regioisomers were obtained at room temperature and on heating, respectively. In CHCl3 solutions, the isomers are subject to reversible isomerization accompanied by the cleavage of Pd-N and C-N bonds in the carbene fragment XylNCN(R)Xyl. Results of DFT calculations followed by the topological analysis of the electron density distribution within the formalism of Bader's theory (AIM method) reveal that in CHCl3 solution the relative stability of the regioisomers (ΔGexp = 1.2 kcal/mol; ΔGcalcd = 3.2 kcal/mol) is determined by the energy difference between two types of the intramolecular chalcogen bonds, viz. S···Cl in KRs (2.8-3.0 kcal/mol) and S···N in TRs (4.6-5.3 kcal/mol). In the case of the 1,3,4-thiadiazol-2-amines, the regioisomers are formed in approximately equal amounts and, accordingly, the energy difference between these species is only 0.1 kcal/mol in terms of ΔGexp (ΔGcalcd = 2.1 kcal/mol). The regioisomers were characterized by elemental analyses (C, H, N), HRESI+-MS and FTIR, 1D (1H, 13C{1H}) and 2D (1H,1H-COSY, 1H,1H-NOESY, 1H,13C-HSQC, 1H,13C-HMBC) NMR spectroscopies, and structures of six complexes (three KRs and three TRs) were elucidated by single-crystal X-ray diffraction.

...