Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39264355

RESUMEN

Ferroelectric tunnel junctions (FTJs) are a class of memristor which promise low-power, scalable, field-driven analog operation. In order to harness their full potential, operation with identical pulses is targeted. In this paper, several weight update schemes for FTJs are investigated, using either nonidentical or identical pulses, and with time delays between the pulses ranging from 1 µs to 10 s. Experimentally, a method for achieving nonlinear weight update with identical pulses at long programming delays is demonstrated by limiting the switching current via a series resistor. Simulations show that this concept can be expanded to achieve weight update in a 1T1C cell by limiting the switching current through a transistor operating in subthreshold or saturation mode. This leads to a maximum linearity in the weight update of 86% for a dynamic range (maximum switched polarization) of 30 µC/cm2. It is further demonstrated via simulation that engineering the device to achieve a narrower switching peak increases the linearity in scaled devices to >93% for the same range.

2.
ACS Appl Mater Interfaces ; 16(32): 42415-42425, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082222

RESUMEN

The capability to reliably program partial polarization states with nanosecond programming speed and femtojoule energies per bit in ferroelectrics makes them an ideal candidate to realize multibit memory elements for high-density crossbar arrays, which could enable neural network models with a large number of parameters at the edge. However, a thorough understanding of the domain switching dynamics involved in the polarization reversal is required to achieve full control of the multibit capability. Transient current integration measurements are adopted to investigate the domain dynamics in aluminum scandium nitride (Al0.85Sc0.15N) and hafnium zirconium oxide (Hf0.5Zr0.5O2). The switching dynamics are correlated to the crystal structure of the films. The contributions of domain nucleation and domain wall motion are decoupled by analyzing the rate of change of the time-dependent normalized switched polarization. Thermally activated creep domain wall motion characterizes the Al0.85Sc0.15N switching dynamics. The statistics of independently nucleating domains and the domain wall creep motion in Hf0.5Zr0.5O2 are associated with the spatially inhomogeneous distribution of local switching field due to polymorphism, absence of preferential crystallite orientation, as well as defects and charges that can be located at the grain boundaries. The c-axis texture, single-phase nature, and strong likelihood of less fabrication process-induced defects contribute to the homogeneity of the local switching field in Al0.85Sc0.15N. Nonetheless, defects generated and redistributed upon bipolar electric field switching cycling result in Al0.85Sc0.15N domain wall pinning. The wake-up effect in Hf0.5Zr0.5O2 is explained thorough the continuous addition of switchable regions associated with two independent distributions of characteristic switching times.

3.
Nanomaterials (Basel) ; 14(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998745

RESUMEN

The graphene adjustable-barriers phototransistor is an attractive novel device for potential high speed and high responsivity dual-band photodetection. In this device, graphene is embedded between the semiconductors silicon and germanium. Both n-type and p-type Schottky contacts between graphene and the semiconductors are required for this device. While n-type Schottky contacts are widely investigated, reports about p-type Schottky contacts between graphene and the two involved semiconductors are scarce. In this study, we demonstrate a p-type Schottky contact between graphene and p-germanium. A clear rectification with on-off ratios of close to 103 (±5 V) and a distinct photoresponse at telecommunication wavelengths in the infrared are achieved. Further, p-type silicon is transferred to or deposited on graphene, and we also observe rectification and photoresponse in the visible range for some of these p-type Schottky junctions. These results are an important step toward the realization of functional graphene adjustable-barrier phototransistors.

4.
ACS Appl Mater Interfaces ; 16(25): 32533-32542, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38873965

RESUMEN

Investigations on fluorite-structured ferroelectric HfO2/ZrO2 thin films are aiming to achieve high-performance films required for memory and computing technologies. These films exhibit excellent scalability and compatibility with the complementary metal-oxide semiconductor process used by semiconductor foundries, but stabilizing ferroelectric properties with a low operation voltage in the as-fabricated state of these films is a critical component for technology advancement. After removing the influence of interfacial layers, a linear correlation is observed between the biaxial strain and the electric field for transforming the nonferroelectric tetragonal to the ferroelectric orthorhombic phase in ZrO2 thin films. This observation is supported by applying the principle of energy conservation in combination with ab initio and molecular dynamics simulations. According to the simulations, a rarely reported Pnm21 orthorhombic phase may be stabilized by tuning biaxial strain in the ZrO2 films. This study demonstrates the significant influence of interfacial layers and biaxial strain on the phase transition fields and shows how strain engineering can be used to improve ferroelectric wake-up in ZrO2.

5.
Sci Rep ; 14(1): 5813, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461196

RESUMEN

Vertical stacking of different two-dimensional (2D) materials into van der Waals heterostructures exploits the properties of individual materials as well as their interlayer coupling, thereby exhibiting unique electrical and optical properties. Here, we study and investigate a system consisting entirely of different 2D materials for the implementation of electronic devices that are based on quantum mechanical band-to-band tunneling transport such as tunnel diodes and tunnel field-effect transistors. We fabricated and characterized van der Waals heterojunctions based on semiconducting layers of WSe2 and MoS2 by employing different gate configurations to analyze the transport properties of the junction. We found that the device dielectric environment is crucial for achieving tunneling transport across the heterojunction by replacing thick oxide dielectrics with thin layers of hexagonal-boronnitride. With the help of additional top gates implemented in different regions of our heterojunction device, it was seen that the tunneling properties as well as the Schottky barriers at the contact interfaces could be tuned efficiently by using layers of graphene as an intermediate contact material.

6.
Adv Sci (Weinh) ; 11(16): e2308797, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38355302

RESUMEN

Ferroelectric wurtzite-type aluminum scandium nitride (Al1-xScxN) presents unique properties that can enhance the performance of non-volatile memory technologies. The realization of the full potential of Al1-xScxN requires a comprehensive understanding of the mechanism of polarization reversal and domain structure dynamics involved in the ferroelectric switching process. In this work, transient current integration measurements performed by a pulse switching method are combined with domain imaging by piezoresponse force microscopy (PFM) to investigate the kinetics of domain nucleation and wall motion during polarization reversal in Al0.85Sc0.15N capacitors. In the studied electric field range (from 4.4 to 5.6 MV cm-1), ferroelectric switching proceeds via domain nucleation and wall movement. The currently available phenomenological models are shown to not fully capture all the details of the complex dynamics of polarization reversal in Al0.85Sc0.15N. PFM reveals a non-linear increase of both domain nucleation rate and lateral wall velocity during the switching process, as well as the dependency of the domain pattern on the polarization reversal direction. A continuously faster N- to M-polar switching upon cycling is reported and ascribed to an increasing number of M-polar nucleation sites and density of domain walls.

7.
ACS Appl Mater Interfaces ; 15(34): 40709-40718, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37606167

RESUMEN

This work demonstrates the novel concept of a mixed-dimensional reconfigurable field effect transistor (RFET) by combining a one-dimensional (1D) channel material such as a silicon (Si) nanowire with a two-dimensional (2D) material as a gate dielectric. An RFET is an innovative device that can be dynamically programmed to perform as either an n- or p-FET by applying appropriate gate potentials. In this work, an insulating 2D material, hexagonal boron nitride (hBN), is introduced as a gate dielectric and encapsulation layer around the nanowire in place of a thermally grown or atomic-layer-deposited oxide. hBN flake was mechanically exfoliated and transferred onto a silicon nanowire-based RFET device using the dry viscoelastic stamping transfer technique. The thickness of the hBN flakes was investigated by atomic force microscopy and transmission electron microscopy. The ambipolar transfer characteristics of the Si-hBN RFETs with different gating architectures showed a significant improvement in the device's electrical parameters due to the encapsulation and passivation of the nanowire with the hBN flake. Both n- and p-type characteristics measured through the top gate exhibited a reduction of hysteresis by 10-20 V and an increase in the on-off ratio (ION/IOFF) by 1 order of magnitude (up to 108) compared to the values measured for unpassivated nanowire. Specifically, the hBN encapsulation provided improved electrostatic top gate coupling, which is reflected in the enhanced subthreshold swing values of the devices. For a single nanowire, an improvement up to 0.97 and 0.5 V/dec in the n- and p-conduction, respectively, is observed. Due to their dynamic switching and polarity control, RFETs boast great potential in reducing the device count, lowering power consumption, and playing a crucial role in advanced electronic circuitry. The concept of mixed-dimensional RFET could further strengthen its functionality, opening up new pathways for future electronics.

8.
Nano Lett ; 23(15): 7213-7220, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37523481

RESUMEN

Aluminum scandium nitride (Al1-xScxN), with its large remanent polarization, is an attractive material for high-density ferroelectric random-access memories. However, the cycling endurance of Al1-xScxN ferroelectric capacitors is far below what can be achieved in other ferroelectric materials. Understanding the nature and dynamics of the breakdown mechanism is of the utmost importance for improving memory reliability. The breakdown phenomenon in ferroelectric Al1-xScxN is proposed to be an impulse thermal filamentary-driven process along preferential defective pathways. For the first time, stable and robust bipolar filamentary resistive switching in ferroelectric Al1-xScxN is reported. A hot atom damage defect generation model illustrates how filament formation and ferroelectric switching are connected. The model reveals the tendency of the ferroelectric wurtzite-type Al1-xScxN system to reach internal symmetry with bipolar electric field cycling. Defects generated from bipolar electric field cycling influence both the energy barrier between the polarization states and that required for the filament formation.

9.
ACS Appl Mater Interfaces ; 15(13): 16963-16974, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951382

RESUMEN

While technologically challenging, the integration of ferroelectric thin films with graphene spintronics potentially allows the realization of highly efficient, electrically tunable, nonvolatile memories through control of the interfacial spin-orbit driven interaction occurring at graphene/Co interfaces deposited on heavy metal supports. Here, the integration of ferroelectric Hf0.5Zr0.5O2 on graphene/Co/heavy metal epitaxial stacks is investigated via the implementation of several nucleation methods in atomic layer deposition. By employing in situ Al2O3 as a nucleation layer sandwiched between Hf0.5Zr0.5O2 and graphene, the Hf0.5Zr0.5O2 demonstrates a remanent polarization (2Pr) of 19.2 µC/cm2. Using an ex situ, naturally oxidized sputtered Ta layer for nucleation, we could control 2Pr via the interlayer thickness, reaching maximum values of 28 µC/cm2 with low coercive fields. Magnetic hysteresis measurements taken before and after atomic layer deposition show strong perpendicular magnetic anisotropy, with minimal deviations in the magnetization reversal pathways due to the Hf0.5Zr0.5O2 deposition process, thus pointing to a good preservation of the magnetic stack including single-layer graphene. X-ray diffraction measurements further confirm that the high-quality interfaces demonstrated in the stack remain unperturbed by the ferroelectric deposition and anneal. The proposed graphene-based ferroelectric/magnetic structures offer the strong advantages of ferroelectricity and ferromagnetism at room temperature, enabling the development of novel magneto-electric and nonvolatile in-memory spin-orbit logic architectures with low power switching.

10.
ACS Appl Mater Interfaces ; 15(5): 7030-7043, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715613

RESUMEN

The discovery of ferroelectricity in aluminum scandium nitride (Al1-xScxN) opens technological perspectives for harsh environments and space-related memory applications, considering the high-temperature stability of piezoelectricity in aluminum nitride. The ferroelectric and material properties of 100 nm-thick Al0.72Sc0.28N are studied up to 873 K, combining both electrical and in situ X-ray diffraction measurements as well as transmission electron microscopy and energy-dispersive X-ray spectroscopy. The present work demonstrates that Al0.72Sc0.28N can achieve high switching polarization and tunable coercive fields in a 375 K temperature range from room temperature up to 673 K. The degradation of the ferroelectric properties in the capacitors is observed above this temperature. Reduction of the effective top electrode area and consequent oxidation of the Al0.72Sc0.28N film are mainly responsible for this degradation. A slight variation of the Sc concentration is quantified across grain boundaries, even though its impact on the ferroelectric properties cannot be isolated from those brought by the top electrode deterioration and Al0.72Sc0.28N oxidation. The Curie temperature of Al0.72Sc0.28N is confirmed to be above 873 K, thus corroborating the promising thermal stability of this ferroelectric material. The present results further support the future adoption of Al1-xScxN in memory technologies for harsh environments like applications in space missions.

11.
Nanotechnology ; 34(12)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36538824

RESUMEN

Hf0.5Zr0.5O2(HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al2O3interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al2O3that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al2O3at the top interface demonstrate a higher remanent polarization (2Pr∼ 42µC cm-2) and endurance limit beyond 108cycles at a cycling field amplitude of 3.5 MV cm-1. We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al2O3layer. We demonstrate that the use of Al2O3as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices.

12.
Adv Mater ; 35(37): e2206042, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36017895

RESUMEN

Due to the voltage driven switching at low voltages combined with nonvolatility of the achieved polarization state, ferroelectric materials have a unique potential for low power nonvolatile electronic devices. The competitivity of such devices is hindered by compatibility issues of well-known ferroelectrics with established semiconductor technology. The discovery of ferroelectricity in hafnium oxide changed this situation. The natural application of nonvolatile devices is as a memory cell. Nonvolatile memory devices also built the basis for other applications like in-memory or neuromorphic computing. Three different basic ferroelectric devices can be constructed: ferroelectric capacitors, ferroelectric field effect transistors and ferroelectric tunneling junctions. In this article first the material science of the ferroelectricity in hafnium oxide will be summarized with a special focus on tailoring the switching characteristics towards different applications.The current status of nonvolatile ferroelectric memories then lays the ground for looking into applications like in-memory computing. Finally, a special focus will be given to showcase how the basic building blocks of spiking neural networks, the neuron and the synapse, can be realized and how they can be combined to realize neuromorphic computing systems. A summary, comparison with other technologies like resistive switching devices and an outlook completes the paper.

13.
Nat Commun ; 13(1): 7042, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396630

RESUMEN

Reconfigurable field effect transistors are an emerging class of electronic devices, which exploit a structure with multiple independent gates to selectively adjust the charge carrier transport. Here, we propose a new device variant, where not only p-type and n-type operation modes, but also an ambipolar mode can be selected solely by adjusting a single program voltage. It is demonstrated how the unique device reconfigurability of the new variant can be exploited for analog circuit design. The non-linearity of the ambipolar mode can be used for frequency doubling without the generation of additional harmonics. Further, phase shifter and follower circuits are enabled by the n- and p-type modes, respectively. All three functions can be combined to create a 3-to-1 reconfigurable analog signal modulation circuit on a single device enabling wireless communication schemes. Both, the concept as well as the application have been experimentally demonstrated on industrial-scale fully-depleted SOI platform. The special transport physics in those structures has been analyzed by TCAD simulations as well as temperature dependent measurements.

14.
ACS Appl Mater Interfaces ; 14(37): 42232-42244, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069477

RESUMEN

Hafnia-zirconia (HfO2-ZrO2) solid solution thin films have emerged as viable candidates for electronic applications due to their compatibility with Si technology and demonstrated ferroelectricity at the nanoscale. The oxygen source in atomic layer deposition (ALD) plays a crucial role in determining the impurity concentration and phase composition of HfO2-ZrO2 within metal-ferroelectric-metal devices, notably at the Hf0.5Zr0.5O2 /TiN interface. The interface characteristics of HZO/TiN are fabricated via sequential no-atmosphere processing (SNAP) with either H2O or O2-plasma to study the influence of oxygen source on buried interfaces. Time-of-flight secondary ion mass spectrometry reveals that HZO films grown via O2-plasma promote the development of an interfacial TiOx layer at the bottom HZO/TiN interface. The presence of the TiOx layer leads to the development of 111-fiber texture in HZO as confirmed by two-dimensional X-ray diffraction (2D-XRD). Structural and chemical differences between HZO films grown via H2O or O2-plasma were found to strongly affect electrical characteristics such as permittivity, leakage current density, endurance, and switching kinetics. While HZO films grown via H2O yielded a higher remanent polarization value of 25 µC/cm2, HZO films grown via O2-plasma exhibited a comparable Pr of 21 µC/cm2 polarization and enhanced field cycling endurance limit by almost 2 orders of magnitude. Our study illustrates how oxygen sources (O2-plasma or H2O) in ALD can be a viable way to engineer the interface and properties in HZO thin films.

15.
ACS Appl Mater Interfaces ; 14(34): 39249-39254, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35993449

RESUMEN

A graphene-based three-terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field-effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal-insulator gate structure to modulate the device currents. The key feature of the device is the two graphene-semiconductor Schottky barriers with different heights that are controlled simultaneously by the gate voltage. Due to the asymmetry of the barriers, the drain current exceeds the gate current by several orders of magnitude. Thus, the GABT can be considered an amplifier with an alterable current gain. In this work, a silicon-graphene-germanium GABT with an ultra-high current gain (ID/IG up to 8 × 106) was fabricated, and the device functionality was demonstrated. Additionally, a capacitance model is applied to predict the theoretical device performance resulting in an on-off ratio above 106, a swing of 87 mV/dec, and a drive current of about 1 × 106 A/cm2.

16.
Front Neurosci ; 16: 875656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720700

RESUMEN

Many biomarkers including neurotransmitters are found in external body fluids, such as sweat or saliva, but at lower titration levels than they are present in blood. Efficient detection of such biomarkers thus requires, on the one hand, to use techniques offering high sensitivity, and, on the other hand, to use a miniaturized format to carry out diagnostics in a minimally invasive way. Here, we present the hybrid integration of bottom-up silicon-nanowire Schottky-junction FETs (SiNW SJ-FETs) with complementary-metal-oxide-semiconductor (CMOS) readout and amplification electronics to establish a robust biosensing platform with 32 × 32 aptasensor measurement sites at a 100 µm pitch. The applied hetero-junctions yield a selective biomolecular detection down to femtomolar concentrations. Selective and multi-site detection of dopamine is demonstrated at an outstanding sensitivity of ∼1 V/fM. The integrated platform offers great potential for detecting biomarkers at high dilution levels and could be applied, for example, to diagnosing neurodegenerative diseases or monitoring therapy progress based on patient samples, such as tear liquid, saliva, or eccrine sweat.

17.
Nat Commun ; 13(1): 1228, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264570

RESUMEN

Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2 and ZrO2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.

18.
Materials (Basel) ; 15(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35160737

RESUMEN

Insulated-gate GaN-based transistors can fulfill the emerging demands for the future generation of highly efficient electronics for high-frequency, high-power and high-temperature applications. However, in contrast to Si-based devices, the introduction of an insulator on (Al)GaN is complicated by the absence of a high-quality native oxide for GaN. Trap states located at the insulator/(Al)GaN interface and within the dielectric can strongly affect the device performance. In particular, although AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) provide superior properties in terms of gate leakage currents compared to Schottky-gate HEMTs, the presence of an additional dielectric can induce threshold voltage instabilities. Similarly, the presence of trap states can be detrimental for the operational stability and reliability of other architectures of GaN devices employing a dielectric layer, such as hybrid MIS-FETs, trench MIS-FETs and vertical FinFETs. In this regard, the minimization of trap states is of critical importance to the advent of different insulated-gate GaN-based devices. Among the various dielectrics, aluminum oxide (Al2O3) is very attractive as a gate dielectric due to its large bandgap and band offsets to (Al)GaN, relatively high dielectric constant, high breakdown electric field as well as thermal and chemical stability against (Al)GaN. Additionally, although significant amounts of trap states are still present in the bulk Al2O3 and at the Al2O3/(Al)GaN interface, the current technological progress in the atomic layer deposition (ALD) process has already enabled the deposition of promising high-quality, uniform and conformal Al2O3 films to gate structures in GaN transistors. In this context, this paper first reviews the current status of gate dielectric technology using Al2O3 for GaN-based devices, focusing on the recent progress in engineering high-quality ALD-Al2O3/(Al)GaN interfaces and on the performance of Al2O3-gated GaN-based MIS-HEMTs for power switching applications. Afterwards, novel emerging concepts using the Al2O3-based gate dielectric technology are introduced. Finally, the recent status of nitride-based materials emerging as other gate dielectrics is briefly reviewed.

19.
Langmuir ; 37(49): 14284-14291, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34860534

RESUMEN

Among other new device concepts, nickel silicide (NiSix)-based Schottky barrier nanowire transistors are projected to supplement down-scaling of the complementary metal-oxide semiconductor (CMOS) technology as its physical limits are reached. Control over the NiSix phase and its intrusions into the nanowire is essential for superior performance and down-scaling of these devices. Several works have shown control over the phase, but control over the intrusion lengths has remained a challenge. To overcome this, we report a novel millisecond-range flash lamp annealing (FLA)-based silicidation process. Nanowires are fabricated on silicon-on-insulator substrates using a top-down approach. Subsequently, Ni silicidation experiments are carried out using FLA. It is demonstrated that this silicidation process gives unprecedented control over the silicide intrusions. Scanning electron microscopy and high-resolution transmission electron microscopy are performed for structural characterization of the silicide. FLA temperatures are estimated with the help of simulations.

20.
Nat Commun ; 12(1): 6642, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789741

RESUMEN

Transistor concepts based on semiconductor nanowires promise high performance, lower energy consumption and better integrability in various platforms in nanoscale dimensions. Concerning the intrinsic transport properties of electrons in nanowires, relatively high mobility values that approach those in bulk crystals have been obtained only in core/shell heterostructures, where electrons are spatially confined inside the core. Here, it is demonstrated that the strain in lattice-mismatched core/shell nanowires can affect the effective mass of electrons in a way that boosts their mobility to distinct levels. Specifically, electrons inside the hydrostatically tensile-strained gallium arsenide core of nanowires with a thick indium aluminium arsenide shell exhibit mobility values 30-50 % higher than in equivalent unstrained nanowires or bulk crystals, as measured at room temperature. With such an enhancement of electron mobility, strained gallium arsenide nanowires emerge as a unique means for the advancement of transistor technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA