Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 147: 107338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583253

RESUMEN

Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.


Asunto(s)
Antibacterianos , Escherichia coli , Fluorometría , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Sitios de Unión , Estructura Molecular , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Relación Estructura-Actividad , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Animales , Bovinos , Azitromicina/farmacología , Azitromicina/química , Azitromicina/metabolismo
2.
Antibiotics (Basel) ; 11(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36551395

RESUMEN

A well-known class of antibacterials, 14- and 15-membered macrolides are widely prescribed to treat upper and lower respiratory tract infections. Azithromycin is a 15-membered macrolide antibiotic possessing a broad spectrum of antibacterial potency and favorable pharmacokinetics. Bacterial resistance to marketed antibiotics is growing rapidly and represents one of the major global hazards to human health. Today, there is a high need for discovery of new anti-infective agents to combat resistance. Recently discovered conjugates of azithromycin and thiosemicarbazones, the macrozones, represent one such class that exhibits promising activities against resistant pathogens. In this paper, we employed an approach which combined LC-SPE/cryo NMR, MS/MS and molecular modeling for rapid separation, identification and characterization of bioactive macrozones and their diastereomers. Multitrapping of the chromatographic peaks on SPE cartridges enabled sufficient sample quantities for structure elucidation and biological testing. Furthermore, two-dimensional NOESY NMR data and molecular dynamics simulations revealed stereogenic centers with inversion of chirality. Differences in biological activities among diastereomers were detected. These results should be considered in the process of designing new macrolide compounds with bioactivity. We have shown that this methodology can be used for a fast screening and identification of the macrolide reaction components, including stereoisomers, which can serve as a source of new antibacterials.

3.
Molecules ; 26(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34684905

RESUMEN

LC-SPE/cryo NMR and MS methodologies have been developed and employed for a rapid structure determination of 4″-tetrahydrofurfuryl macrozone reaction mixture components. Macrozones, novel conjugates of azithromycin, and thiosemicarbazones have shown very good in vitro antibacterial activities against susceptible and some resistant bacterial strains and are promising agents for further development. The post-column multiple trapping of the chromatographically separated reaction mixture components on the SPE cartridges increased the sensitivity and together with cryogenically cooled NMR probe made it possible to identify and structurally characterize main 4″-tetrahydrofurfuryl macrozone reaction mixture compounds including those present at very low concentration level. This approach has several advantages over a classical off-line procedure, efficiency and low solvent consumption being the two most important ones. All identified components were process-related. It has been demonstrated that two different kinds of compounds with respect to structure were identified, i.e., macrolide-related and thiosemicarbazone-related ones. This methodology can serve as a platform for reliable and effective macrolides reaction components structure profiling, serving as both isolation and identification tools.

4.
Materials (Basel) ; 14(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34639957

RESUMEN

The structure and interactions of several aminopropyl-azithromycin derivatives (1a-c) have been studied by using NMR spectroscopy and docking calculations. Compounds 1a-c are precursors in the synthesis of macrozones, novel bioactive azithromycin-thiosemicarbazone conjugates active against some resistant bacterial strains. Today, bacterial resistance is considered as one of the major threats to human health. Knowledge on drug binding mode and conformations is one of the key factors in the process of designing molecules to fight resistance. In solution state, compounds 1a and 1c exist in the 3-endo-folded-out conformation, while 1b adopts a classical folded-out conformation. 13C and 15N CPMAS NMR spectra pointed towards similar structures in the solid state. The transferred NOESY NMR spectra confirmed binding to the E. coli ribosome and suggest that dominant conformations in the bound state resemble those in the free one. STD experiments identified reactive groups of 1a-c in close contact with the ribosome resembling binding epitopes observed for the related 15-membered macrolides. Docking studies revealed that the studied compounds bind to the same ribosome binding pocket similarly to erythromycin in the crystal state, and that the binding is achieved through H-bonds and van der Waals interactions. The bound conformation is the same as determined by NMR. STD enhancements observed for methylene protons in the aminopropyl side chain indicate additional interactions which contribute to the overall binding energy.

5.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096889

RESUMEN

Macrolide antibiotics are macrocyclic compounds that are clinically used and prescribed for the treatment of upper and lower respiratory tract infections. They inhibit the synthesis of bacterial proteins by reversible binding to the 23S rRNA at or near the peptidyl transferase center. However, their excellent antibacterial profile was largely compromised by the emergence of bacterial resistance. Today, fighting resistance to antibiotics is one of the greatest challenges in medicinal chemistry. Considering various physicochemical properties of macrolides, understanding their structure and interactions with macromolecular targets is crucial for the design of new antibiotics efficient against resistant pathogens. The solid-state structures of some macrolide-ribosome complexes have recently been solved, throwing new light on the macrolide binding mechanisms. On the other hand, a combination of NMR spectroscopy and molecular modeling calculations can be applied to study free and bound conformations in solution. In this article, a description of advanced physicochemical methods for elucidating the structure and interactions of macrolide antibiotics in solid state and solution will be provided, and their principal advantages and drawbacks will be discussed.


Asunto(s)
Antibacterianos/química , Macrólidos/química , Ribosomas/efectos de los fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Simulación por Computador , Microscopía por Crioelectrón , Cristalografía por Rayos X , Macrólidos/metabolismo , Macrólidos/farmacología , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Ribosomas/química , Ribosomas/metabolismo
6.
Int J Antimicrob Agents ; 56(5): 106147, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32853671

RESUMEN

Increasing bacterial resistance to existing antibiotics presents a serious threat to human health, and new antibacterial agents are desperately needed. Unfortunately, the number of newly marketed antibiotics has decreased dramatically in recent years. Withdrawal of the macrolide antibiotic telithromycin and the inability of solithromycin to gain marketing approval have prompted our efforts to search for new anti-infective macrolide compounds. Here we present the design, synthesis and biological evaluation of a novel hybrid class of azithromycin conjugates, the macrozones. Evaluation of prepared compounds against a panel of pathogenic bacteria revealed that these molecules showed excellent activities against susceptible Streptococcus pneumoniae, Streptococcus pyogenes and Enterococcus faecalis strains comparable with or better than azithromycin. Furthermore, prepared macrozones exhibited excellent activity against efflux resistant S. pneumoniae, which was 32 times better than that of azithromycin, and very good activity against an efflux resistant Staphylococcus aureus strain against which azithromycin is inactive. The results described here can serve as a good basis to guide further activities directed toward the discovery of more potent macrolide anti-infectives.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/análogos & derivados , Azitromicina/farmacología , Diseño de Fármacos , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Farmacorresistencia Bacteriana Múltiple/fisiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Simulación del Acoplamiento Molecular , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/crecimiento & desarrollo , Tiosemicarbazonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA