Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Circulation ; 150(6): e109-e128, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38881493

RESUMEN

Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.


Asunto(s)
American Heart Association , Enfermedades de las Válvulas Cardíacas , Humanos , Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/metabolismo , Estados Unidos , Animales
2.
Circulation ; 149(18): 1419-1434, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357791

RESUMEN

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS: CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1ß (interleukin 1ß) or IL-6 (interleukin 6). RESULTS: Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1ß or IL-6. CONCLUSIONS: We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.


Asunto(s)
Fibrilación Atrial , Hematopoyesis Clonal , Proteínas de Unión al ADN , Dioxigenasas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Proto-Oncogénicas , Animales , Dioxigenasas/metabolismo , Dioxigenasas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Inflamasomas/metabolismo , Humanos , Ratones , Hematopoyesis Clonal/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Masculino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Anciano , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Persona de Mediana Edad , Ratones Noqueados , Factores de Riesgo
3.
Small ; 20(8): e2306334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817372

RESUMEN

While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.

4.
Inorg Chem ; 62(51): 20940-20947, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078891

RESUMEN

Controlling the orientation of complex molecules in molecular junctions is crucial to their development into functional devices. To date, this has been achieved through the use of multipodal compounds (i.e., containing more than two anchoring groups), resulting in the formation of tri/tetrapodal compounds. While such compounds have greatly improved orientation control, this comes at the cost of lower surface coverage. In this study, we examine an alternative approach for generating multimodal compounds by binding multiple independent molecular wires together through metal coordination to form a molecular bundle. This was achieved by coordinating iron(II) and cobalt(II) to 5,5'-bis(methylthio)-2,2'-bipyridine (L1) and (methylenebis(4,1-phenylene))bis(1-(5-(methylthio)pyridin-2-yl)methanimine) (L2) to give two monometallic complexes, Fe-1 and Co-1, and two bimetallic helicates, Fe-2 and Co-2. Using XPS, all of the complexes were shown to bind to a gold surface in a fac fashion through three thiomethyl groups. Using single-molecule conductance and DFT calculations, each of the ligands was shown to conduct as an independent wire with no impact from the rest of the complex. These results suggest that this is a useful approach for controlling the geometry of junction formation without altering the conductance behavior of the individual molecular wires.

5.
Circ Res ; 133(4): 313-329, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37449401

RESUMEN

BACKGROUND: ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS: CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS: We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS: Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.


Asunto(s)
Fibrilación Atrial , Proteínas de Homeodominio , Animales , Humanos , Ratones , Fibrilación Atrial/genética , Calcio/metabolismo , Dilatación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética
6.
Science ; 381(6654): 231-239, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37440641

RESUMEN

Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1+ macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2-∕- HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1+ macrophages as targets for immunotherapy in atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Macrófagos , Osteopontina , Animales , Humanos , Ratones , Fibrilación Atrial/genética , Fibrilación Atrial/inmunología , Atrios Cardíacos , Macrófagos/inmunología , Insuficiencia de la Válvula Mitral/genética , Osteopontina/genética , Eliminación de Gen , Movimiento Celular , Análisis de Expresión Génica de una Sola Célula
8.
Langmuir ; 38(46): 14290-14301, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36354380

RESUMEN

Sphingolipids are an important class of lipids found in mammalian cell membranes with important structural and signaling roles. They differ from another major group of lipids, the glycerophospholipids, in the connection of their hydrocarbon chains to their headgroups. In this study, a combination of electrochemical and structural methods has been used to elucidate the effect of this difference on sphingolipid behavior in an applied electric field. N-Palmitoyl sphingomyelin forms bilayers of similar coverage and thickness to its close analogue di-palmitoyl phosphatidylcholine. Grazing incidence diffraction data show slightly closer packing and a smaller chain tilt angle from the surface normal. Electrochemical IR results at low charge density show that the difference in tilt angle is retained on deposition to form bilayers. The bilayers respond differently to increasing electric field strength: chain tilt angles increase for both molecules, but sphingomyelin chains remain tilted as field strength is further increased. This behavior is correlated with disruption of the hydrogen-bonding network of small groups of sphingomyelin molecules, which may have significance for the behavior of molecules in lipid rafts in the presence of strong fields induced by ion gradients or asymmetric distribution of charged lipids.


Asunto(s)
Membrana Dobles de Lípidos , Esfingomielinas , Animales , Esfingomielinas/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas , Membrana Celular , Microdominios de Membrana , Mamíferos
9.
ACS Energy Lett ; 7(8): 2611-2618, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35990412

RESUMEN

Monitoring the precise lithium inventory of the graphitic carbon electrode within the Li-ion battery, in order to assess cell aging, has remained challenging. Herein, operando electrochemical Kerr-gated Raman spectroscopy measurements on microcrystalline graphite during complete lithium insertion and extraction are reported and compared to conventional continuous-wave Raman microscopy. Suppression of the fluorescence emission signals via use of the Kerr gate enabled the measurement of the Raman graphitic bands of highly lithiated graphite where 0.5 ≤ x ≤ 1 for Li x C6. The broad graphitic band initially centered at ca. 1590 cm-1 for Li0.5C6 linearly shifted to ca. 1564 cm-1 with further lithiation to LiC6, thus offering a sensitive diagnostic tool to interrogate high states of charge of graphitic carbon-based negative electrodes.

10.
Nat Cardiovasc Res ; 1(7): 649-664, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36034743

RESUMEN

Sudden cardiac death, arising from abnormal electrical conduction, occurs frequently in patients with coronary heart disease. Myocardial ischemia simultaneously induces arrhythmia and massive myocardial leukocyte changes. In this study, we optimized a mouse model in which hypokalemia combined with myocardial infarction triggered spontaneous ventricular tachycardia in ambulatory mice, and we showed that major leukocyte subsets have opposing effects on cardiac conduction. Neutrophils increased ventricular tachycardia via lipocalin-2 in mice, whereas neutrophilia associated with ventricular tachycardia in patients. In contrast, macrophages protected against arrhythmia. Depleting recruited macrophages in Ccr2 -/- mice or all macrophage subsets with Csf1 receptor inhibition increased both ventricular tachycardia and fibrillation. Higher arrhythmia burden and mortality in Cd36 -/- and Mertk -/- mice, viewed together with reduced mitochondrial integrity and accelerated cardiomyocyte death in the absence of macrophages, indicated that receptor-mediated phagocytosis protects against lethal electrical storm. Thus, modulation of leukocyte function provides a potential therapeutic pathway for reducing the risk of sudden cardiac death.

11.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998035

RESUMEN

Obesity is an important risk factor for atrial fibrillation (AF), but a better mechanistic understanding of obesity-related atrial fibrillation is required. Serum glucocorticoid kinase 1 (SGK1) is a kinase positioned within multiple obesity-related pathways, and prior work has shown a pathologic role of SGK1 signaling in ventricular arrhythmias. We validated a mouse model of obesity-related AF using wild-type mice fed a high-fat diet. RNA sequencing of atrial tissue demonstrated substantial differences in gene expression, with enrichment of multiple SGK1-related pathways, and we showed upregulated of SGK1 transcription, activation, and signaling in obese atria. Mice expressing a cardiac specific dominant-negative SGK1 were protected from obesity-related AF, through effects on atrial electrophysiology, action potential characteristics, structural remodeling, inflammation, and sodium current. Overall, this study demonstrates the promise of targeting SGK1 in a mouse model of obesity-related AF.


Asunto(s)
Fibrilación Atrial , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Fibrilación Atrial/genética , Fibrilación Atrial/prevención & control , Modelos Animales de Enfermedad , Glucocorticoides/metabolismo , Atrios Cardíacos/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Sodio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Angew Chem Int Ed Engl ; 61(34): e202207184, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35699678

RESUMEN

Revealing how formation protocols influence the properties of the solid-electrolyte interphase (SEI) on Si electrodes is key to developing the next generation of Li-ion batteries. SEI understanding is, however, limited by the low-throughput nature of conventional characterisation techniques. Herein, correlative scanning electrochemical cell microscopy (SECCM) and shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS) are used for combinatorial screening of the SEI formation under a broad experimental space (20 sets of different conditions with several repeats). This novel approach reveals the heterogeneous nature and dynamics of the SEI electrochemical properties and chemical composition on Si electrodes, which evolve in a characteristic manner as a function of cycle number. Correlative SECCM/SHINERS has the potential to screen thousands of candidate experiments on a variety of battery materials to accelerate the optimization of SEI formation methods, a key bottleneck in battery manufacturing.

13.
J Am Chem Soc ; 144(28): 12698-12714, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35767015

RESUMEN

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.

14.
Sci Adv ; 7(45): eabf7910, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739324

RESUMEN

Cell plasticity plays a key role in embryos by maintaining the differentiation potential of progenitors. Whether postnatal somatic cells revert to an embryonic-like naïve state regaining plasticity and redifferentiate into a cell type leading to a disease remains intriguing. Using genetic lineage tracing and single-cell RNA sequencing, we reveal that Oct4 is induced by nuclear factor κB (NFκB) at embyronic day 9.5 in a subset of mouse endocardial cells originating from the anterior heart forming field at the onset of endocardial-to-mesenchymal transition. These cells acquired a chondro-osteogenic fate. OCT4 in adult valvular aortic cells leads to calcification of mouse and human valves. These calcifying cells originate from the Oct4 embryonic lineage. Genetic deletion of Pou5f1 (Pit-Oct-Unc, OCT4) in the endocardial cell lineage prevents aortic stenosis and calcification of ApoE−/− mouse valve. We established previously unidentified self-cell reprogramming NFκB- and OCT4-mediated inflammatory pathway triggering a dose-dependent mechanism of valve calcification.

15.
Langmuir ; 37(40): 11887-11899, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34590852

RESUMEN

Lipid bilayers form the basis of biological cell membranes, selective and responsive barriers vital to the function of the cell. The structure and function of the bilayer are controlled by interactions between the constituent molecules and so vary with the composition of the membrane. These interactions also influence how a membrane behaves in the presence of electric fields they frequently experience in nature. In this study, we characterize the electrochemical phase behavior of dipalmitoylphosphatidylcholine (DPPC), a glycerophospholipid prevalent in nature and often used in model systems and healthcare applications. DPPC bilayers were formed on Au(111) electrodes using Langmuir-Blodgett and Langmuir-Schaefer deposition and studied with electrochemical methods, atomic force microscopy (AFM) and in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The coverage of the substrate determined with AFM is in accord with that estimated from differential capacitance measurements, and the bilayer thickness is slightly higher than for bilayers of the similar but shorter-chained lipid, dimyristoylphosphatidylcholine (DMPC). DPPC bilayers exhibit similar electrochemical response to DMPC bilayers, but the organization of molecules differs, particularly at negative charge densities. Infrared spectra show that DPPC chains tilt as the charge density on the metal is increased in the negative direction, but, unlike in DMPC, the chains then return to their original tilt angle at the most negative potentials. The onset of the increase in the chain tilt angle coincides with a decrease in solvation around the ester carbonyl groups, and the conformation around the acyl chain linkage differs from that in DMPC. We interpret the differences in behavior between bilayers formed from these structurally similar lipids in terms of stronger dispersion forces between DPPC chains and conclude that relatively subtle changes in molecular structure may have a significant impact on a membrane's response to its environment.


Asunto(s)
Oro , Fosfolípidos , 1,2-Dipalmitoilfosfatidilcolina , Dimiristoilfosfatidilcolina , Membrana Dobles de Lípidos , Estructura Molecular , Espectrofotometría Infrarroja
16.
Nat Commun ; 12(1): 4997, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404774

RESUMEN

Epicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro.


Asunto(s)
Agregación Celular/fisiología , Técnicas de Cocultivo , Miocitos Cardíacos/fisiología , Familia de Aldehído Deshidrogenasa 1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteína Morfogenética Ósea 4 , Calcio/metabolismo , Diferenciación Celular , Genes del Tumor de Wilms , Humanos , Células Madre Pluripotentes Inducidas , Factor II del Crecimiento Similar a la Insulina/metabolismo , Mesodermo , Miocitos del Músculo Liso , Retinal-Deshidrogenasa/metabolismo , Semaforinas , Células Madre , Proteínas de Dominio T Box/metabolismo
17.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33793303

RESUMEN

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Asunto(s)
Síndrome de Barth/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Síndrome de Barth/fisiopatología , Humanos , Ratones , Ratones Noqueados
18.
J Am Chem Soc ; 143(10): 3817-3829, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33606524

RESUMEN

The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.

19.
RSC Adv ; 11(32): 19768-19778, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35479201

RESUMEN

The efficacy of a number of different methods for depositing a dimyristoylphosphatidylcholine (DMPC) lipid bilayer or DMPC-cholesterol (3 : 1) mixed bilayer onto a silicon substrate has been investigated in a quantitative manner using atomic force microscopy (AFM) image analysis to extract surface coverage. Complementary AFM-IR measurements were used to confirm the presence of the lipids. For the Langmuir-Blodgett/Schaefer deposition method at temperatures below the chain-melting transition temperature (T m), a large number of bilayer defects resulted when DMPC was deposited from a water subphase. Addition of calcium ions to the trough led to smaller, more frequent defects, whereas addition of cholesterol to the lipid mixture led to a vast improvement in bilayer coverage. Poor coverage was achieved for deposition at temperatures above T m. Formation of the deposited bilayer from vesicle fusion proved a more reliable method for all systems, with formation of near-complete bilayers within 60 seconds at temperatures above T m, although this method led to a higher probability of multilayer formation and rougher bilayer surfaces.

20.
Sci Rep ; 10(1): 17966, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087755

RESUMEN

The megadiverse Neotropical fish fauna lacks a comprehensive and reliable DNA reference database, which hampers precise species identification and DNA based biodiversity assessment in the region. Here, we developed a mitochondrial 12S ribosomal DNA reference database for 67 fish species, representing 54 genera, 25 families, and six major Neotropical orders. We aimed to develop mini-barcode markers (i.e. amplicons with less than 200 bp) suitable for DNA metabarcoding by evaluating the taxonomic resolution of full-length and mini-barcodes and to determine a threshold value for fish species delimitation using 12S. Evaluation of the target amplicons demonstrated that both full-length library (565 bp) and mini-barcodes (193 bp) contain enough taxonomic resolution to differentiate all 67 fish species. For species delimitation, interspecific genetic distance threshold values of 0.4% and 0.55% were defined using full-length and mini-barcodes, respectively. A custom reference database and specific mini-barcode markers are important assets for ecoregion scale DNA based biodiversity assessments (such as environmental DNA) that can help with the complex task of conserving the megadiverse Neotropical ichthyofauna.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Cartilla de ADN/genética , ADN Ribosómico/genética , Peces/genética , Animales , Bases de Datos Genéticas , Biblioteca de Genes , Mitocondrias/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA