Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38513801

Climatic events are affecting the Amazon basin and according to projections it is predicted the intensification of climate changes through increases in temperature and carbon dioxide (CO2). Recent evidence has revealed that exposure to an extreme climate scenario elicits oxidative damage in some fish species, impairing their metabolism and physiology, contributing to their susceptibility. Thus, the comprehension of physiological alterations in Arapaima gigas (pirarucu) to the climatic changes forecasted for the next 100 years is important to evaluate its capability to deal with oxidative stress. The objective of this work was to determine whether antioxidant defense system is able to prevent muscle oxidative damage of pirarucu exposed 96 h to extreme climate scenario, as well as the effects of this exposition on muscle fatty acid levels. Lipid peroxidation and reactive oxygen species significantly increase in the muscle of pirarucus exposed to an extreme climate scenario compared to control, while muscle superoxide dismutase, catalase, and glutathione peroxidase were significantly lower. Total amount of saturated fatty acids (SFAs) was significantly higher in pirarucu exposed to an extreme climate scenario compared to control, while total content of monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs) was significantly lower. Exposure to an extreme climate scenario causes muscular oxidative stress and that the antioxidant systems are inefficient to avoid oxidative damage. In addition, the increase of total SFAs and the decrease of MUFAs and PUFAs probably intend to maintain membrane fluidity while facing high temperature and CO2 levels.


Antioxidants , Fatty Acids , Animals , Antioxidants/metabolism , Temperature , Carbon Dioxide/pharmacology , Oxidative Stress , Fishes/metabolism , Fatty Acids, Unsaturated
2.
Res Vet Sci ; 167: 105110, 2024 Feb.
Article En | MEDLINE | ID: mdl-38150942

This study aimed to determine whether the addition of butyric acid glycerides as substitutes to conventional growth promoters can provide adequate zootechnical performance and intestinal health in healthy piglets in the nursery phase. We used 90 male piglets (average weight of 6.5 kg) subdivided into five treatments with six replicates per treatment. The treatments had the same basal diet: NC-negative control (without growth promoter), PC-positive control (with gentamicin, oral), PSB-protected sodium butyrate, FSB-free sodium butyrate, and TRI-tributyrin. In these animals, zootechnical performance was evaluated on days 1, 10, 20 and 39, microbiological analysis on days 14 and 39, hematocrit, blood biochemistry and intestinal histology, intestinal oxidation and antioxidation on day 39. The average daily weight gain was higher in the TRI group on days 21 to 39 in the nursery (P = 0.03), with more significant weight gain from 1 to 39 days (P = 0.05). There were higher leukocyte counts in the PC group than in the TRI group and higher lymphocyte counts in the PC treatment than in the NC or TRI groups. Escherichia coli counts were lower in the PC, followed by the PSB and TRI groups on day 39 (P = 0.01). Lower crypt depths were found in the TRI and FSB groups, followed by PC, than in the NC group (P = 0.01). Higher values for crypt villosity ratio were found in the FSB and TRI groups than in the NC group (P = 0.05). Lower lipid peroxidation was found in analyzes of serum oxidative status (LPO: P = 0.01), associated with greater activities of superoxide dismutase - SOD (P = 0.08), glutathione S-transferase - GST (P = 0.09) in PSB and TRI groups than in the NC group. In conclusion, the use of butyric acid in the form of tributyrin can be used as growth enhancers in piglets in the nursery phase.


Anti-Bacterial Agents , Glycerides , Swine , Animals , Male , Butyric Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Weight Gain , Escherichia coli , Animal Feed/analysis
3.
An Acad Bras Cienc ; 95(2): e20201805, 2023.
Article En | MEDLINE | ID: mdl-37075373

This study aimed to determine whether the addition of a microencapsulated herbal blend (MHB) based on thymol, carvacrol, and cinnamaldehyde in dairy sheep feed would improve production efficiency, milk quality, and animal health. Thirty lactating Lacaune ewes were divided into three groups: Control (T0), 150 mg blend/kg of feed (T150), and 250 mg blend/kg of feed (T250). Milk was measured before the beginning of the experiment (d 0), at the end of the adaptation period (d 15), and during the experiment (d 20). In milk samples, was measured the composition, somatic cell count (SCC), reactive oxygen species (ROS), lipoperoxidation (LPO), and total antioxidant capacity. The MHB improved the milk production (only T150 vs. T0 sheep on d 20), productive efficiency and feed efficiency, and reduced the milk SCC (only T250 vs. T0 sheep, on d 20), ROS and tended to reduce the milk levels of LPO (only T250 vs. T0 sheep on d 20). Also, MHB reduced the blood levels of neutrophils and ROS (only T250 vs. T0 sheep on d 20) and increased total protein and globulin levels. Thus, a microencapsulated blend of thymol, carvacrol, and cinnamaldehyde improved the productive performance and milk quality of sheep.


Lactation , Milk , Sheep , Animals , Female , Lactation/physiology , Reactive Oxygen Species/metabolism , Thymol/metabolism , Diet/veterinary , Animal Feed/analysis
...