Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Liver Int ; 44(2): 518-531, 2024 Feb.
Article En | MEDLINE | ID: mdl-38010911

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS: We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 µM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS: These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.


Bile Duct Neoplasms , Cholangiocarcinoma , Liver Neoplasms , Humans , Filamins/genetics , Cholangiocarcinoma/pathology , Liver Neoplasms/genetics , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology
2.
Cancers (Basel) ; 15(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37046842

Hepatocellular carcinoma and cholangiocarcinoma are the fourth most lethal primary cancers worldwide. Therefore, there is an urgent need for therapeutic strategies, including immune cell targeting therapies. The heterogeneity of liver cancer is partially explained by the characteristics of the tumor microenvironment (TME), where adaptive and innate immune system cells are the main components. Pioneering studies of primary liver cancers revealed that tumor-infiltrating immune cells and their dynamic interaction with cancer cells significantly impacted carcinogenesis, playing an important role in cancer immune evasion and responses to immunotherapy treatment. In particular, B cells may play a prominent role and have a controversial function in the TME. In this work, we highlight the effect of B lymphocytes as tumor infiltrates in relation to primary liver cancers and their potential prognostic value. We also present the key pathways underlying B-cell interactions within the TME, as well as the way that a comprehensive characterization of B-cell biology can be exploited to develop novel immune-based therapeutic approaches.

3.
Front Immunol ; 13: 952715, 2022.
Article En | MEDLINE | ID: mdl-36090979

The immunological events leading to type 1 diabetes (T1D) are complex and heterogeneous, underscoring the necessity to study rare cases to improve our understanding. Here, we report the case of a 16-year-old patient who showed glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D, autoimmune thrombocytopenic purpura (AITP), and common variable immunodeficiency (CVID) were diagnosed. The patient underwent low carb diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20 monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis manifested 4 years after diagnosis and was managed with prolonged antibiotic treatment. In the fifth year of monitoring, the patient progressed to insulin dependency despite ZnT8A autoantibody resolution and IA-2A and GADA autoantibody decline. The patient had low T1D genetic risk score (GRS = 0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8. Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a gene encoding B-cell activating factor receptor (BAFFR). Significant reduced blood B-cell numbers and BAFFR levels were observed in line with a dysregulation in BAFF-BAFFR signaling. The elevated frequency of PD-1+ dysfunctional Tfh cells composed predominantly by Th1 phenotype was observed at disease onset and during follow-up. This case report describes a patient progressing to T1D on a BAFFR-mediated immunodysregulatory background, suggesting a role of BAFF-BAFFR signaling in islet-specific tolerance and T1D progression.


Diabetes Mellitus, Type 1 , Adolescent , Autoantibodies , B-Cell Activating Factor/genetics , Humans , Insulin/genetics , Mutation
4.
Eur J Immunol ; 52(7): 1171-1189, 2022 07.
Article En | MEDLINE | ID: mdl-35562849

Common variable immunodeficiency (CVID) is the most frequent primary antibody deficiency whereby follicular helper T (Tfh) cells fail to establish productive responses with B cells in germinal centers. Here, we analyzed the frequency, phenotype, transcriptome, and function of circulating Tfh (cTfh) cells in CVID patients displaying autoimmunity as an additional phenotype. A group of patients showed a high frequency of cTfh1 cells and a prominent expression of PD-1 and ICOS as well as a cTfh mRNA signature consistent with highly activated, but exhausted, senescent, and apoptotic cells. Plasmatic CXCL13 levels were elevated in this group and positively correlated with cTfh1 cell frequency and PD-1 levels. Monoallelic variants in RTEL1, a telomere length- and DNA repair-related gene, were identified in four patients belonging to this group. Their blood lymphocytes showed shortened telomeres, while their cTfh were more prone to apoptosis. These data point toward a novel pathogenetic mechanism in CVID, whereby alterations in DNA repair and telomere elongation might predispose to antibody deficiency. A Th1, highly activated but exhausted and apoptotic cTfh phenotype was associated with this form of CVID.


Common Variable Immunodeficiency , Apoptosis/genetics , Common Variable Immunodeficiency/genetics , Humans , Programmed Cell Death 1 Receptor/genetics , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer
5.
Diabetes ; 70(12): 2892-2902, 2021 12.
Article En | MEDLINE | ID: mdl-34620616

In the attempt to understand the origin of autoantibody (AAb) production in patients with and at risk for type 1 diabetes (T1D), multiple studies have analyzed and reported alterations in T follicular helper (Tfh) cells in presymptomatic AAb+ subjects and patients with T1D. Yet, whether the regulatory counterpart of Tfh cells, represented by T follicular regulatory (Tfr) cells, is similarly altered is still unclear. To address this question, we performed analyses in peripheral blood, spleen, and pancreatic lymph nodes (PLN) of organ donor subjects with T1D. Blood analyses were also performed in living AAb- and AAb+ subjects. While negligible differences in the frequency and phenotype of blood Tfr cells were observed among T1D, AAb-, and AAb+ adult subjects, the frequency of Tfr cells was significantly reduced in spleen and PLN of T1D as compared with nondiabetic control subjects. Furthermore, adoptive transfer of Tfr cells delayed disease development in a mouse model of T1D, a finding that could indicate that Tfr cells play an important role in peripheral tolerance and regulation of autoreactive Tfh cells. Together, our findings provide evidence of Tfr cell alterations within disease-relevant tissues in patients with T1D, suggesting a role for Tfr cells in defective humoral tolerance and disease pathogenesis.


Diabetes Mellitus, Type 1/immunology , Lymph Nodes/pathology , Spleen/pathology , T-Lymphocytes, Regulatory/pathology , Adult , Animals , Case-Control Studies , Cells, Cultured , Diabetes Mellitus, Type 1/pathology , Humans , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreas
6.
Blood Adv ; 5(16): 3174-3187, 2021 08 24.
Article En | MEDLINE | ID: mdl-34424322

Adenosine deaminase 2 deficiency (DADA2) is a rare inherited disorder that is caused by autosomal recessive mutations in the ADA2 gene. Clinical manifestations include early-onset lacunar strokes, vasculitis/vasculopathy, systemic inflammation, immunodeficiency, and hematologic defects. Anti-tumor necrosis factor therapy reduces strokes and systemic inflammation. Allogeneic hematopoietic stem/progenitor cell (HSPC) transplantation can ameliorate most disease manifestations, but patients are at risk for complications. Autologous HSPC gene therapy may be an alternative curative option for patients with DADA2. We designed a lentiviral vector encoding ADA2 (LV-ADA2) to genetically correct HSPCs. Lentiviral transduction allowed efficient delivery of the functional ADA2 enzyme into HSPCs from healthy donors. Supranormal ADA2 expression in human and mouse HSPCs did not affect their multipotency and engraftment potential in vivo. The LV-ADA2 induced stable ADA2 expression and corrected the enzymatic defect in HSPCs derived from DADA2 patients. Patients' HSPCs re-expressing ADA2 retained their potential to differentiate into erythroid and myeloid cells. Delivery of ADA2 enzymatic activity in patients' macrophages led to a complete rescue of the exaggerated inflammatory cytokine production. Our data indicate that HSPCs ectopically expressing ADA2 retain their multipotent differentiation ability, leading to functional correction of macrophage defects. Altogether, these findings support the implementation of HSPC gene therapy for DADA2.


Adenosine Deaminase , Vasculitis , Adenosine Deaminase/genetics , Animals , Humans , Inflammation , Intercellular Signaling Peptides and Proteins , Macrophages , Mice
...