Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Bioorg Chem ; 93: 103303, 2019 12.
Article En | MEDLINE | ID: mdl-31585264

Racemic resolution of (+/-)-MAD28, a representative caged xanthone, was accomplished using (1S, 4R)-(-)-camphanic chloride as the chiral agent. Selective crystallization of the resulting diastereomers in acetonitrile produced, after hydrolysis, the pure enantiomers. Screening of racemic MAD28 and both enantiomers across a broad spectrum of breast cancer cell lines revealed that they: (a) are equipotent in each of the breast cancer subtypes examined; and (b) exhibit a higher degree of cytotoxicity against breast cancer cell lines of basal-like subtype and triple negative receptor status. The results support the notion that MAD28 and related caged xanthones are promising drug leads against chemoresistant and metastatic cancers.


Antineoplastic Agents/chemistry , Xanthones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Female , Humans , Molecular Conformation , Stereoisomerism , Xanthones/chemical synthesis , Xanthones/pharmacology
2.
Eur J Med Chem ; 168: 405-413, 2019 Apr 15.
Article En | MEDLINE | ID: mdl-30831408

Inflammatory breast cancer (IBC) is a highly metastatic, lethal form of breast cancer that lacks targeted therapeutic strategies. Inspired by the promising cytotoxicity of gambogic acid and related caged xanthones in spheroidsMARY-X, an in vitro preclinical IBC model, we constructed a library of synthetic analogs and performed structure-activity relationship studies. The studies revealed that functionalizing the A-ring of the caged xanthone framework can significantly affect potency. Specifically, introduction of hydroxyl or fluorine groups at discrete positions of the A-ring leads to enhanced cytotoxicity at submicromolar concentrations. These compounds induce complete dissolution of spheroidsMARY-X with subsequent apoptosis of both the peripherally- and centrally-located cells, proliferative and quiescent-prone (e.g. hypoxic), respectively. These results highlight the structural flexibility and pharmacological potential of the caged xanthone motif for the design of IBC-targeting therapeutics.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Inflammatory Breast Neoplasms/drug therapy , Xanthones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Inflammatory Breast Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship , Xanthones/chemical synthesis , Xanthones/chemistry
...