Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(8): 14847-14859, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859420

RESUMEN

This article presents an experimental demonstration of a spectroscopic method based on the dispersion of the scattering spectrum from laser-illuminated liquid water collected through a rubidium atomic vapor prism cell. Resonant absorption at 780 nm suppresses Mie/Rayleigh scattering and the steep gradients in refractive index near the 780 nm absorption lines separate Brillouin scattering from Raman scattering in liquid water. The opposing spatial displacements of the Stokes and Anti-Stokes shifted Brillouin peaks yield a measurement of their spectral shifts and thus the temperature or salinity of the water. Performance of the prism cell was mapped with a frequency tunable laser for frequency offsets from the center of the rubidium absorption feature of between -15 GHz and 15 GHz and at rubidium cell temperatures between 148 °C and 177 °C. The experimental results are compared with a numerical model and show good agreement with the scattering peak displacements within experimental uncertainties of probe frequency and cell temperature. In the present configuration, the minimum detectable frequency shift is estimated to be 15.5 MHz. Experiments were conducted in water demonstrating the utility of this method for the measurement of water temperature. Liquid water LiDAR was suggested as one of the possible applications for this method and several ways to improve the experimental setup and cell temperature stability were identified.

2.
Opt Lett ; 49(3): 426-429, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300024

RESUMEN

This Letter describes, to the best of our knowledge, a new approach to flow tagging, nitric oxide (NO) Ionization Induced Flow Tagging and Imaging (NiiFTI), and presents the first experimental demonstration for single-shot velocimetry in a near Mach 6 hypersonic flow at 250 kHz. The mean velocity of 860 m/s was measured with a single-shot standard deviation of as low as 3.4 m/s and mean velocity uncertainty of 5.5 m/s. NiiFTI is characterized by a long fluorescence lifetime of nitrogen with 1e decay of approximately 50 µs measured in air. The method relies on a single nanosecond laser combined with a high-speed camera, creating an opportunity for the utilization of a typical nitric oxide (NO) laser-induced fluorescence (LIF) experimental setup with minor modifications as well as pulse-burst lasers (PBLs) for ultrahigh repetition rates.

3.
Sci Rep ; 14(1): 3703, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355680

RESUMEN

This work reports the measurement of two-dimensional electron properties over a nanosecond scale integration time across a femtosecond laser-induced plasma filament in atmospheric pressure argon. Radial electron properties across the [Formula: see text] [Formula: see text]m diameter filament are obtained at discrete axial locations at 2.5 mm steps by one-dimensional high-resolution laser Thomson scattering with a spatial resolution of 10 [Formula: see text]m. These measurements reveal plasma structural information in the filament. The Thomson spectral lineshapes exhibit clear spectral sidebands with an [Formula: see text] parameter [Formula: see text], enabling the measurement of both electron temperature and density profiles. These measurements yield electron densities on the order of [Formula: see text]/m[Formula: see text] and electron temperatures of [Formula: see text] eV. Heating from the probe laser due to inverse bremsstrahlung is taken into account to correct the Thomson scattering electron temperature measurements. Under these conditions, electron-neutral collision induced bremsstrahlung becomes the dominant laser-induced plasma heating process associated with the probe laser. The measurements reveal structural features of the filament, including an asymmetrically skewed density structure in the axial direction and reversed radial distributions of electron density and temperature.

4.
Opt Express ; 31(2): 1764-1775, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785204

RESUMEN

This work presents the first, to the best of our knowledge, experimental demonstration of slow light imaging spectroscopy for thermometry of liquid water. This novel technique for measuring temperature relies on detecting the spectral shift of Brillouin peaks in water using the temporal delay through a cell containing an atomic vapor. Stand-off sensing capabilities are achieved by time-domain measurements of Brillouin scattering tuned to be near a rubidium atomic resonance and passed through a cell filled with rubidium vapor. An injection seeded optical parametric oscillator (OPO) is demonstrated to be a versatile light source for slow light imaging spectroscopy applications. The narrow OPO pulse spectrum allows for a precise profiling of slow light features of rubidium and accurate tracking of the temperature dependence of Brillouin scattering spectral shift. A comparison between the experimental data and numerical simulation over a temperature range of 20 to 99 degrees Celsius shows a good agreement for both qualitative and quantitative results.

5.
Opt Lett ; 44(15): 3853-3856, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368985

RESUMEN

We present an approach for the measurement of time evolving electric field profiles in atmospheric pressure plasma discharges using electric field induced second harmonic generation (E-FISH). While the E-FISH effect has been known of for some time, recent advances in laser and detection technology have allowed the method to be utilized for spatial measurements of an arbitrarily applied electric field. A cylindrical lens is used to focus the femtosecond laser light to a line and an intensified charge coupled device is used for detection, allowing for one-dimensional (1D) spatial resolution on the order of ∼50 µm. Measurements have been carried out verifying the spatial resolution using a spatially periodic, localized electric field. Calibrated 1D electric field measurements have been completed with a time resolution of 500 ps in a laminar cold atmospheric pressure plasma jet with argon core flow and N2 co-flow powered by a nanosecond (ns) pulse dielectric barrier discharge. The field was shown to propagate as an ionization wave, with a velocity of ∼0.3 mm/ns.

6.
J Appl Phys ; 125(24)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34421126

RESUMEN

A zero-dimensional kinetics simulation of femtosecond laser ionization in nitrogen is proposed that includes fast gas heating effects, electron scattering (elastic and inelastic) rate coefficients from BOLSIG+ and photoionization based on filamentation theory. Key rate coefficients possessing significant uncertainty are tuned (within the range of variation found in literature) to reproduce the time-varying signal acquired by a bandpass-filtered photomultiplier tube with good agreement up to several hundred nanoseconds. Separate spectral measurements calibrate the relative strength of signal components. Derived equations relate the model to experimental measurements in absolute units. Reactions contributing to the rate of change of important species are displayed in terms of absolute rate and relative fraction. In general, decreasing the gas density lengthens the duration of early reactions and delays the start of later reactions. The model agrees with data taken in a variable temperature and pressure free jet by an intensified camera. Results demonstrate that initial signal depends primarily on gas density and secondarily on gas temperature. The optimal (maximum) initial signal occurs at a gas density below atmospheric. Decreases in gas density alter the evolution of excited-state populations, postponing the peak (while reducing its value) and slowing the rate of decay. For the optimal case, populations are favorably shifted in time with respect to the gate delay (and width) to boost the signal. Reductions in gas temperature generally enhance initial signal due to elevated dissociative recombination of cluster ions (along with excited-state coupling from quenching and energy pooling).

7.
AIAA J ; 57(5): 1793-1800, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-33442067

RESUMEN

Femtosecond laser tagging is demonstrated for the first time in R134a (1,1,1,2-Tetrafluoroethane) gas, and in mixtures of R134a with small quantities of air. A systematic study of this tagging method is explored through the adjustment of gas pressure, mixture ratio and laser properties. It is found that the signal strength and lifetime are greatest at low pressures for excitation at both the 400 nm and 800 nm laser wavelengths. The relative intensities of two spectral peaks in the near-UV emission change as a function of gas pressure and can potentially be used for local pressure measurements. Single shot precision in pure R134a and R134a with 5% air is demonstrated in quiescent gas and at the exit of a subsonic pipe flow. One standard deviation (68%) of the uncertainty lies within 5 m/s of the mean velocity in a low pressure quiescent flow using a delay time of 3µs, and 18 m/s in a 230 m/s flow using a delay of 5 µs. The parameter space of these results are chosen to mimic conditions used in the NASA Langley Research Center's Transonic Dynamics Tunnel. The precision and signal lifetime demonstrate the feasibility of using this technique for measuring flowfields that induce airfoil flutter.

8.
Opt Lett ; 43(3): 551-554, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400838

RESUMEN

Tagging is demonstrated in argon and nitrogen gases using a femtosecond laser with pulse energies of approximately 70 µJ through a nonresonant ionization process at 267 nm. The signal fluorescence lifetime in pure argon and nitrogen-argon mixtures are measured and found to be long enough to make mean velocity and turbulence measurements in a subsonic flow. In pure argon, the dominating processes involve atomic transitions between 700 and 900 nm. In argon-nitrogen mixtures, nitrogen quenches atomic argon species and the dominant radiating processes are transitions in the nitrogen second positive system. In pure nitrogen, emission on the microsecond time scale comes from the nitrogen first positive system. Lower energy density is needed for tagging and narrower tagged lines are produced using 267 nm as compared to femtosecond laser tagging in argon and nitrogen using 400 nm or 800 nm. Velocimetry using the 267 nm line is demonstrated in a turbulent argon pipe flow and the Taylor microscale of the flow is determined.

9.
Appl Opt ; 56(31): 8632-8638, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091674

RESUMEN

We report the use of femtosecond laser electronic excitation tagging (FLEET) for velocimetry at a 100-kHz imaging rate. Sequential, single-shot, quantitative velocity profiles of an underexpanded supersonic nitrogen jet were captured at a 100-kHz rate. The signal and lifetime characteristics of the FLEET emission were investigated in a methane flame above a Hencken burner at varying equivalence ratios, and room temperature gas mixtures involving air, methane, and nitrogen. In the post-flame region of the Hencken burner, the emission lifetime was measured as two orders of magnitude lower than lab air conditions. Increasing the equivalence ratio above 1.1 leads to a change in behavior, with a doubled lifetime. By measuring the emission in a cold methane flow, a short-lived signal was measured that decayed after the first microsecond. As a proof of concept for velocimetry in a reacting environment, the exhaust of a pulsed detonator was measured by FLEET. Quantitative velocity information was obtained that corresponded to a maximum centerline velocity of 1800 m/s for the detonation wave. Extension of FLEET to larger scale, complex flow environments is now a viable option.

10.
Opt Express ; 24(6): A544-52, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136875

RESUMEN

We demonstrate backwards lasing in atomic argon directly excited via a three-photon pumping in air mixtures with argon mole fractions down to 10%. We achieve well collimated, narrowband coherent emission at 1327nm by using both broadband femtosecond excitation and narrow linewidth picosecond excitation in the vicinity of 261nm. This approach shows promise for standoff trace detection in the atmosphere.

11.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26170432

RESUMEN

The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles.

12.
Appl Opt ; 50(26): 5158-62, 2011 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-21946998

RESUMEN

Time-accurate velocity measurements in unseeded air are made by tagging nitrogen with a femtosecond-duration laser pulse and monitoring the displacement of the molecules with a time-delayed, fast-gated camera. Centimeter-long lines are written through the focal region of a ∼1 mJ, 810 nm laser and are produced by nonlinear excitation and dissociation of nitrogen. Negligible heating is associated with this interaction. The emission arises from recombining nitrogen atoms and lasts for tens of microseconds in natural air. It falls into the 560 to 660 nm spectral region and consists of multiple spectral lines associated with first positive nitrogen transitions. The feasibility of this concept is demonstrated with lines written across a free jet, yielding instantaneous and averaged velocity profiles. The use of high-intensity femtosecond pulses for flow tagging allows the accurate determination of velocity profiles with a single laser system and camera.

13.
Appl Opt ; 50(4): A68-73, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21283222

RESUMEN

A microwave-scattering-based resonance-enhanced multi-photon ionization technique is used to detect molecular species such as NO, CO, Xe, and Ar in pure form, and for standoff detection of trace species in atmospheric pressure air. In this paper,the spectra, dynamics, and the detection limits of trace species in air are studied. We demonstrate 10 m scale standoff detection of NO, and show that the system has a linear response down to the parts in 10(9) NO levels in ambient air.

14.
Proc Natl Acad Sci U S A ; 108(8): 3130-4, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21297033

RESUMEN

In an earlier publication we demonstrated that by using pairs of pulses of different colors (e.g., red and blue) it is possible to excite a dilute ensemble of molecules such that lasing and/or gain-swept superradiance is realized in a direction toward the observer. This approach is a conceptual step toward spectroscopic probing at a distance, also known as standoff spectroscopy. In the present paper, we propose a related but simpler approach on the basis of the backward-directed lasing in optically excited dominant constituents of plain air, N(2) and O(2). This technique relies on the remote generation of a weakly ionized plasma channel through filamentation of an ultraintense femtosecond laser pulse. Subsequent application of an energetic nanosecond pulse or series of pulses boosts the plasma density in the seed channel via avalanche ionization. Depending on the spectral and temporal content of the driving pulses, a transient population inversion is established in either nitrogen- or oxygen-ionized molecules, thus enabling a transient gain for an optical field propagating toward the observer. This technique results in the generation of a strong, coherent, counterpropagating optical probe pulse. Such a probe, combined with a wavelength-tunable laser signal(s) propagating in the forward direction, provides a tool for various remote-sensing applications. The proposed technique can be enhanced by combining it with the gain-swept excitation approach as well as with beam shaping and adaptive optics techniques.

15.
Science ; 331(6016): 442-5, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21273482

RESUMEN

The compelling need for standoff detection of hazardous gases and vapor indicators of explosives has motivated the development of a remotely pumped, high-gain air laser that produces lasing in the backward direction and can sample the air as the beam returns. We demonstrate that high gain can be achieved in the near-infrared region by pumping with a focused ultraviolet laser. The pumping mechanism is simultaneous resonant two-photon dissociation of molecular oxygen and resonant two-photon pumping of the atomic oxygen fragments. The high gain from the millimeter-length focal zone leads to equally strong lasing in the forward and backward directions. Further backward amplification is achieved with the use of earlier laser spark dissociation. Low-divergence backward air lasing provides possibilities for remote detection.

16.
Phys Rev Lett ; 98(26): 265005, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17678098

RESUMEN

Multiphoton ionization and electron recombination processes are studied in argon using coherent microwave Rayleigh scattering from a localized, resonance-enhanced multiphoton ionization produced plasma. A time dependent one-dimensional plasma dynamic model is developed to predict the time evolution of the microwave scattering from the plasma. Experimental results of the argon ionization spectrum and electron recombination rates are in good agreement with the model predictions.

17.
Appl Opt ; 46(23): 5593-7, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17694103

RESUMEN

Circular arrays of plasma filaments induced by femtosecond laser pulses in atmospheric air are shown to support guided modes of electromagnetic radiation in the centimeter and millimeter wavelength range. With the refractive index of laser-induced filaments being lower than the refractive index of nonionized air, arrays of such filaments can serve as a structured waveguide cladding, providing an index guiding of radar signals in a nonionized gas region. In spite of attenuation of radar radiation induced by plasma absorption, filament-array waveguides are shown to enhance radar signal transmission relative to freely propagating radar beams.

18.
Opt Express ; 14(23): 11113-27, 2006 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19529526

RESUMEN

This paper presents a narrow linewidth, high resolution, and high quantum efficiency imaging transmission filter based on optical trapping of resonance radiation in potassium vapor. The filter can be used to image radiation over a bandwidth narrow enough to fall within a Fraunhofer dark zone in the solar spectrum, and it can be applied to the imaging of flames, plumes or discharges containing potassium. It may also be applicable to the imaging of Raman scattering from a tunable laser. The spectral and imaging properties of the filter are demonstrated with a 1 cm aperture optically thick potassium cell illuminated by a narrow linewidth tunable laser. The spectral width at the potassium D2 line wavelength, 766.5 nm, is shown to be 1 to 2 GHz (.002 nm). At the line center, the quantum efficiency is better than 60% and the imaging resolution is better than 30 line pairs per mm. By employing a 200 micron "thin" potassium vapor cell, it is also shown that the filter maintains the high quantum efficiency (~50%) and good imaging capability (~20 lines per mm) across the 2 GHz spectral bandwidth of the cell. The "thin" cell has an out-of-band rejection of better than 1000. Its operation is demonstrated with a tunable laser as well as with broad band light from a potassium lamp and from a potassium chloride seeded flame.

19.
Phys Rev Lett ; 89(18): 183001, 2002 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-12398594

RESUMEN

Coherent Rayleigh-Brillouin scattering in gases has been studied experimentally for the first time in the kinetic regime and shown to give line shapes that differ significantly from the spontaneous Rayleigh-Brillouin scattering. A kinetic model was developed to obtain an analytic solution of the line shape for monatomic gases, and good agreement with the experimental data was achieved.

20.
Appl Opt ; 41(18): 3753-62, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12078703

RESUMEN

We report the first gas temperature measurements in plasmas to our knowledge obtained by filtered Rayleigh scattering (FRS). A narrow-linewidth Ti:sapphire laser is used as the illumination source, and a mercury filter provides strong suppression of elastic background. We perform measurements in weakly ionized glow discharges in pure argon and in an argon-plus-1%-nitrogen mixture. Where possible, we verify the FRS technique by comparing filtered measurements with unfiltered measurements. We present point measurements of axial temperature with uncertainties of less than 5%. We use a planar scheme to obtain radial temperature profiles with uncertainties of 10%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA