Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Neurooncol Adv ; 6(1): vdad163, 2024.
Article En | MEDLINE | ID: mdl-38213835

Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.

2.
BMC Genomics ; 25(1): 122, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38287261

BACKGROUND: Cancers exhibit complex transcriptomes with aberrant splicing that induces isoform-level differential expression compared to non-diseased tissues. Transcriptomic profiling using short-read sequencing has utility in providing a cost-effective approach for evaluating isoform expression, although short-read assembly displays limitations in the accurate inference of full-length transcripts. Long-read RNA sequencing (Iso-Seq), using the Pacific Biosciences (PacBio) platform, can overcome such limitations by providing full-length isoform sequence resolution which requires no read assembly and represents native expressed transcripts. A constraint of the Iso-Seq protocol is due to fewer reads output per instrument run, which, as an example, can consequently affect the detection of lowly expressed transcripts. To address these deficiencies, we developed a concatenation workflow, PacBio Full-Length Isoform Concatemer Sequencing (PB_FLIC-Seq), designed to increase the number of unique, sequenced PacBio long-reads thereby improving overall detection of unique isoforms. In addition, we anticipate that the increase in read depth will help improve the detection of moderate to low-level expressed isoforms. RESULTS: In sequencing a commercial reference (Spike-In RNA Variants; SIRV) with known isoform complexity we demonstrated a 3.4-fold increase in read output per run and improved SIRV recall when using the PB_FLIC-Seq method compared to the same samples processed with the Iso-Seq protocol. We applied this protocol to a translational cancer case, also demonstrating the utility of the PB_FLIC-Seq method for identifying differential full-length isoform expression in a pediatric diffuse midline glioma compared to its adjacent non-malignant tissue. Our data analysis revealed increased expression of extracellular matrix (ECM) genes within the tumor sample, including an isoform of the Secreted Protein Acidic and Cysteine Rich (SPARC) gene that was expressed 11,676-fold higher than in the adjacent non-malignant tissue. Finally, by using the PB_FLIC-Seq method, we detected several cancer-specific novel isoforms. CONCLUSION: This work describes a concatenation-based methodology for increasing the number of sequenced full-length isoform reads on the PacBio platform, yielding improved discovery of expressed isoforms. We applied this workflow to profile the transcriptome of a pediatric diffuse midline glioma and adjacent non-malignant tissue. Our findings of cancer-specific novel isoform expression further highlight the importance of long-read sequencing for characterization of complex tumor transcriptomes.


Glioma , Transcriptome , Humans , Child , Gene Expression Profiling/methods , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing , Sequence Analysis, RNA , High-Throughput Nucleotide Sequencing/methods
3.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Article En | MEDLINE | ID: mdl-37872450

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Epilepsies, Partial , Mosaicism , Humans , Mouth Mucosa , Mutation , Brain , Epilepsies, Partial/genetics
4.
J Mol Diagn ; 24(12): 1292-1306, 2022 12.
Article En | MEDLINE | ID: mdl-36191838

Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.


Neoplasms , Transcriptome , Adolescent , Child , Humans , Alternative Splicing , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Protein Isoforms/genetics , RNA/genetics , Sequence Analysis, RNA , Young Adult
5.
Sci Adv ; 8(28): eabm1890, 2022 07 15.
Article En | MEDLINE | ID: mdl-35857488

T cells redirected to cancer cells either via a chimeric antigen receptor (CAR-T) or a bispecific molecule have been breakthrough technologies; however, CAR-T cells require individualized manufacturing and bispecifics generally require continuous infusions. We created an off-the-shelf, single-dose solution for achieving prolonged systemic serum levels of protein immunotherapeutics via adeno-associated virus (AAV) gene transfer. We demonstrate proof of principle in a CD19+ lymphoma xenograft model using a single intravenous dose of AAV expressing a secreted version of blinatumomab, which could serve as a universal alternative for CD19 CAR-T cell therapy. In addition, we created an inducible version using an exon skipping strategy and achieved repeated, on-demand expression up to at least 36 weeks after AAV injection. Our system could be considered for short-term and/or repeated expression of other transgenes of interest for noncancer applications.


Receptors, Chimeric Antigen , Antigens, CD19/genetics , Genetic Therapy , Humans , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics
6.
Epilepsia ; 63(8): 1981-1997, 2022 08.
Article En | MEDLINE | ID: mdl-35687047

OBJECTIVE: Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS: We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS: We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE: These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.


Epilepsy , Malformations of Cortical Development , Brain/pathology , Child , Epilepsy/pathology , Humans , Malformations of Cortical Development/complications , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
7.
Article En | MEDLINE | ID: mdl-35149534

Closed spinal dysraphism (SD) is a type of neural tube defect originating during early embryonic development whereby the neural tissue of the spinal defect remains covered by skin, often coinciding with markers of cutaneous stigmata. It is hypothesized that these events are caused by multifactorial processes, including genetic and environmental causes. We present an infant with a unique congenital midline lesion associated with a closed SD. Through comprehensive molecular profiling of the intraspinal lesion and contiguous skin lesion, an internal tandem duplication (ITD) of the kinase domain of the fibroblast growth factor receptor 1 (FGFR1) gene was found. This ITD variant is somatic mosaic in nature as supported by a diminished variant allele frequency in the lesional tissue and by its absence in peripheral blood. FGFR1 ITD results in constitutive activation of the receptor tyrosine kinase to promote cell growth, differentiation, and survival through RAS/MAPK signaling. Identification of FGFR1 ITD outside of central nervous system tumors is exceedingly rare, and this report broadens the phenotypic spectrum of somatic mosaic FGFR1-related disease.


Central Nervous System Neoplasms , Neural Tube Defects , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Infant , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
8.
Clin Cancer Res ; 28(3): 498-506, 2022 02 01.
Article En | MEDLINE | ID: mdl-35105718

PURPOSE: Previously, clinical trials of experimental virotherapy for recurrent glioblastoma multiforme (GBM) demonstrated that inoculation with a conditionally replication-competent Δγ134.5 oncolytic herpes simplex virus (oHSV), G207, was safe. Following the initial safety study, a phase Ib trial enrolled 6 adult patients diagnosed with GBM recurrence from which tumor tissue was banked for future studies. PATIENTS AND METHODS: Here, we analyzed tumor RNA sequencing (RNA-seq) data obtained from pre- and posttreatment (collected 2 or 5 days after G207 injection) biopsies from the phase Ib study patients. RESULTS: Using a Spearman rank-order correlation analysis, we identified approximately 500 genes whose expression pattern correlated with survival duration. Many of these genes were enriched for the intrinsic IFN-mediated antiviral and adaptive immune functional responses, including immune cell chemotaxis and antigen presentation to T-cells. Furthermore, we show that the expression of several T-cell-related genes was highest in the patient with the longest survival after G207 inoculation. CONCLUSIONS: Our data support that the oHSV-induced type I IFN production and the subsequent recruitment of an adaptive immune response differed between enrolled patients and showed association with survival duration in patients with recurrent malignant glioma after treatment with an early generation oHSV.


Brain Neoplasms/genetics , Brain Neoplasms/therapy , Clinical Trials, Phase I as Topic , Gene Expression Profiling/methods , Glioblastoma/genetics , Glioblastoma/therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses , RNA, Neoplasm/genetics , Simplexvirus , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Female , Glioblastoma/immunology , Glioblastoma/mortality , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/mortality , Survival Rate
9.
BMC Genomics ; 22(1): 872, 2021 Dec 04.
Article En | MEDLINE | ID: mdl-34863095

BACKGROUND: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. RESULTS: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a "known fusion list" prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient's medical record, both known and novel fusions provided medically meaningful information. CONCLUSIONS: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.


Genome , Neoplasms , Child , Genomics , Humans , Neoplasms/genetics , Sequence Analysis, DNA , Sequence Analysis, RNA
10.
Genes Chromosomes Cancer ; 60(9): 640-646, 2021 09.
Article En | MEDLINE | ID: mdl-34041825

Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.


Alcohol Oxidoreductases/genetics , Carcinoma/genetics , DNA-Binding Proteins/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein EWS/genetics , Stomach Neoplasms/genetics , Adolescent , Age of Onset , Carcinoma/pathology , Humans , Male , Stomach Neoplasms/pathology
11.
Brain ; 144(10): 2971-2978, 2021 11 29.
Article En | MEDLINE | ID: mdl-34048549

Phosphatase and tensin homologue (PTEN) regulates cell growth and survival through inhibition of the mammalian target of rapamycin (MTOR) signalling pathway. Germline genetic variation of PTEN is associated with autism, macrocephaly and PTEN hamartoma tumour syndromes. The effect of developmental PTEN somatic mutations on nervous system phenotypes is not well understood, although brain somatic mosaicism of MTOR pathway genes is an emerging cause of cortical dysplasia and epilepsy in the paediatric population. Here we report two somatic variants of PTEN affecting a single patient presenting with intractable epilepsy and hemimegalencephaly that varied in clinical severity throughout the left cerebral hemisphere. High-throughput sequencing analysis of affected brain tissue identified two somatic variants in PTEN. The first variant was present in multiple cell lineages throughout the entire hemisphere and associated with mild cerebral overgrowth. The second variant was restricted to posterior brain regions and affected the opposite PTEN allele, resulting in a segmental region of more severe malformation, and the only neurons in which it was found by single-nuclei RNA-sequencing had a unique disease-related expression profile. This study reveals brain mosaicism of PTEN as a disease mechanism of hemimegalencephaly and furthermore demonstrates the varying effects of single- or bi-allelic disruption of PTEN on cortical phenotypes.


Cerebral Cortex/diagnostic imaging , Genetic Variation/genetics , Hemimegalencephaly/diagnostic imaging , Hemimegalencephaly/genetics , Mutation/genetics , PTEN Phosphohydrolase/genetics , Cerebral Cortex/surgery , Hemimegalencephaly/surgery , Humans , Infant , Male
12.
Genes Chromosomes Cancer ; 60(8): 577-585, 2021 08.
Article En | MEDLINE | ID: mdl-33893698

Oncogenesis in PLAG1-rearranged tumors often results from PLAG1 transcription factor overexpression driven by promoter-swapping between constitutively expressed fusion partners. PLAG1-rearranged tumors demonstrate diverse morphologies. This study adds to this morphologic heterogeneity by introducing two tumors with PLAG1 rearrangements that display distinct histologic features. The first arose in the inguinal region of a 3-year-old, appeared well-circumscribed with a multinodular pattern, and harbored two fusions: ZFHX4-PLAG1 and CHCHD7-PLAG1. The second arose in the pelvic cavity of a 15-year-old girl, was extensively infiltrative and vascularized with an adipocytic component, and demonstrated a COL3A1-PLAG1 fusion. Both showed low-grade cytomorphology, scarce mitoses, no necrosis, and expression of CD34 and desmin. The ZFHX4-/CHCHD7-PLAG1-rearranged tumor showed no evidence of recurrence after 5 months. By contrast, the COL3A1-PLAG1-rearranged tumor quickly recurred following primary excision with positive margins; subsequent re-excision with adjuvant chemotherapy resulted in no evidence of recurrence after 2 years. While both tumors show overlap with benign and malignant fibroblastic and fibrovascular neoplasms, they also display divergent features. These cases highlight the importance of appropriate characterization in soft tissue tumors with unusual clinical and histologic characteristics.


DNA-Binding Proteins/genetics , Oncogene Proteins, Fusion/genetics , Soft Tissue Neoplasms/genetics , Adolescent , Child, Preschool , Collagen Type III/genetics , Female , Homeodomain Proteins/genetics , Humans , Male , Proteins/genetics , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/surgery , Soft Tissue Neoplasms/therapy , Transcription Factors/genetics
13.
Acta Neuropathol Commun ; 9(1): 61, 2021 04 07.
Article En | MEDLINE | ID: mdl-33827698

Retinoblastoma is a childhood cancer of the retina involving germline or somatic alterations of the RB Transcriptional Corepressor 1 gene, RB1. Rare cases of sellar-suprasellar region retinoblastoma without evidence of ocular or pineal tumors have been described. A nine-month-old male presented with a sellar-suprasellar region mass. Histopathology showed an embryonal tumor with focal Flexner-Wintersteiner-like rosettes and loss of retinoblastoma protein (RB1) expression by immunohistochemistry. DNA array-based methylation profiling confidently classified the tumor as pineoblastoma group A/intracranial retinoblastoma. The patient was subsequently enrolled on an institutional translational cancer research protocol and underwent comprehensive molecular profiling, including paired tumor/normal exome and genome sequencing and RNA-sequencing of the tumor. Additionally, Pacific Biosciences (PacBio) Single Molecule Real Time (SMRT) sequencing was performed from comparator normal and disease-involved tissue to resolve complex structural variations. RNA-sequencing revealed multiple fusions clustered within 13q14.1-q21.3, including a novel in-frame fusion of RB1-SIAH3 predicted to prematurely truncate the RB1 protein. SMRT sequencing revealed a complex structural rearrangement spanning 13q14.11-q31.3, including two somatic structural variants within intron 17 of RB1. These events corresponded to the RB1-SIAH3 fusion and a novel RB1 rearrangement expected to correlate with the complete absence of RB1 protein expression. Comprehensive molecular analysis, including DNA array-based methylation profiling and sequencing-based methodologies, were critical for classification and understanding the complex mechanism of RB1 inactivation in this diagnostically challenging tumor.


Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retinoblastoma Binding Proteins/genetics , Retinoblastoma/genetics , Retinoblastoma/pathology , Ubiquitin-Protein Ligases/genetics , Gene Rearrangement , Genes, Retinoblastoma/genetics , Humans , Infant , Male , Oncogene Proteins, Fusion
14.
PLoS Pathog ; 17(1): e1009222, 2021 01.
Article En | MEDLINE | ID: mdl-33465168

Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor ß-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target.


Adhesins, Bacterial/metabolism , Bacterial Adhesion , Bacterial Proteins/metabolism , Endocarditis, Bacterial/pathology , N-Acetylneuraminic Acid/metabolism , Streptococcus/metabolism , Adhesins, Bacterial/genetics , Animals , Bacterial Proteins/genetics , Endocarditis, Bacterial/metabolism , Endocarditis, Bacterial/microbiology , Male , Rabbits , Streptococcus/classification , Streptococcus/genetics , Streptococcus/isolation & purification
15.
Neurol Genet ; 6(4): e460, 2020 Aug.
Article En | MEDLINE | ID: mdl-32637635

OBJECTIVE: Many genetic studies of intractable epilepsy in pediatric patients primarily focus on inherited, constitutional genetic deficiencies identified in patient blood. Recently, studies have revealed somatic mosaicism associated with epilepsy in which genetic variants are present only in a subset of brain cells. We hypothesize that tissue-specific, somatic mosaicism represents an important genetic etiology in epilepsy and aim to discover somatic alterations in epilepsy-affected brain tissue. METHODS: We have pursued a research study to identify brain somatic mosaicism, using next-generation sequencing (NGS) technologies, in patients with treatment refractory epilepsy who have undergone surgical resection of affected brain tissue. RESULTS: We used an integrated combination of NGS techniques and conventional approaches (radiology, histopathology, and electrophysiology) to comprehensively characterize multiple brain regions from a single patient with intractable epilepsy. We present a 3-year-old male patient with West syndrome and intractable tonic seizures in whom we identified a pathogenic frameshift somatic variant in SLC35A2, present at a range of variant allele fractions (4.2%-19.5%) in 12 different brain tissues detected by targeted sequencing. The proportion of the SLC35A2 variant correlated with severity and location of neurophysiology and neuroimaging abnormalities for each tissue. CONCLUSIONS: Our findings support the importance of tissue-based sequencing and highlight a correlation in our patient between SLC35A2 variant allele fractions and the severity of epileptogenic phenotypes in different brain tissues obtained from a grid-based resection of clinically defined epileptogenic regions.

16.
mBio ; 9(2)2018 04 10.
Article En | MEDLINE | ID: mdl-29636438

5'-Methyl-thioadenosine (MTA) is a dead-end, sulfur-containing metabolite and cellular inhibitor that arises from S-adenosyl-l-methionine-dependent reactions. Recent studies have indicated that there are diverse bacterial methionine salvage pathways (MSPs) for MTA detoxification and sulfur salvage. Here, via a combination of gene deletions and directed metabolite detection studies, we report that under aerobic conditions the facultatively anaerobic bacterium Rhodopseudomonas palustris employs both an MTA-isoprenoid shunt identical to that previously described in Rhodospirillum rubrum and a second novel MSP, both of which generate a methanethiol intermediate. The additional R. palustris aerobic MSP, a dihydroxyacetone phosphate (DHAP)-methanethiol shunt, initially converts MTA to 2-(methylthio)ethanol and DHAP. This is identical to the initial steps of the recently reported anaerobic ethylene-forming MSP, the DHAP-ethylene shunt. The aerobic DHAP-methanethiol shunt then further metabolizes 2-(methylthio)ethanol to methanethiol, which can be directly utilized by O-acetyl-l-homoserine sulfhydrylase to regenerate methionine. This is in contrast to the anaerobic DHAP-ethylene shunt, which metabolizes 2-(methylthio)ethanol to ethylene and an unknown organo-sulfur intermediate, revealing functional diversity in MSPs utilizing a 2-(methylthio)ethanol intermediate. When MTA was fed to aerobically growing cells, the rate of volatile methanethiol release was constant irrespective of the presence of sulfate, suggesting a general housekeeping function for these MSPs up through the methanethiol production step. Methanethiol and dimethyl sulfide (DMS), two of the most important compounds of the global sulfur cycle, appear to arise not only from marine ecosystems but from terrestrial ones as well. These results reveal a possible route by which methanethiol might be biologically produced in soil and freshwater environments.IMPORTANCE Biologically available sulfur is often limiting in the environment. Therefore, many organisms have developed methionine salvage pathways (MSPs) to recycle sulfur-containing by-products back into the amino acid methionine. The metabolically versatile bacterium Rhodopseudomonas palustris is unusual in that it possesses two RuBisCOs and two RuBisCO-like proteins. While RuBisCO primarily serves as the carbon fixation enzyme of the Calvin cycle, RuBisCOs and certain RuBisCO-like proteins have also been shown to function in methionine salvage. This work establishes that only one of the R. palustris RuBisCO-like proteins functions as part of an MSP. Moreover, in the presence of oxygen, to salvage sulfur, R. palustris employs two pathways, both of which result in production of volatile methanethiol, a key compound of the global sulfur cycle. When total available sulfur was plentiful, methanethiol was readily released into the environment. However, when sulfur became limiting, methanethiol release decreased, presumably due to methanethiol utilization to regenerate needed methionine.


Deoxyadenosines/metabolism , Metabolic Networks and Pathways , Methionine/metabolism , Rhodopseudomonas/metabolism , Sulfhydryl Compounds/metabolism , Thionucleosides/metabolism , Aerobiosis , Dihydroxyacetone Phosphate/metabolism , Gene Deletion , Rhodopseudomonas/genetics , Sulfides/metabolism
17.
Proc Natl Acad Sci U S A ; 114(48): E10455-E10464, 2017 11 28.
Article En | MEDLINE | ID: mdl-29133429

Numerous cellular processes involving S-adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments.


Deoxyadenosines/metabolism , Ethylenes/biosynthesis , Rhodopseudomonas/physiology , Rhodospirillum rubrum/physiology , Thionucleosides/metabolism , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Anaerobiosis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metabolic Networks and Pathways/physiology , Phylogeny , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Sulfur/metabolism
18.
Int J Dermatol ; 52(5): 567-71, 2013 May.
Article En | MEDLINE | ID: mdl-23590371

OBJECTIVES: Dermatophytes, belonging to genera including Trichophyton, Epidermophyton, and Microsporum, are the causative agents of superficial fungal infections, prevalences of which are estimated to be as high as 25% in the worldwide population. This study evaluated the activity of topical formulations of NVC-422 (sodium 2-[dichloroamino]-2-methylpropane-1-sulfonate), the lead compound in a new class of antimicrobials that consist of broad-spectrum, fast-acting, nonantibiotic antimicrobial molecules based on the endogenously produced N-chlorotaurines. METHODS: The antifungal efficacy of NVC-422 was investigated using a guinea pig model of infection with Trichophyton mentagrophytes. Infected guinea pigs were randomly assigned to four treatment and two control groups. The efficacy of the treatments was assessed clinically and mycologically at 72 hours after the final topical dose. RESULTS: The test compound 2% NVC-422 in 1% Noveon Gel demonstrated the highest level of clinical efficacy. Outcomes of treatment with all other test compounds differed significantly from outcomes in the untreated control group (P = 0.003, P = 0.029, P = 0.012, and P < 0.0001, respectively). Fungal elements were detectable in skin sections from untreated guinea pigs but not in skin sections obtained from any of the treatment groups. CONCLUSIONS: Evaluation of the efficacy of NVC-422 in the treatment of dermatophytosis using an experimental guinea pig model showed that this compound possesses potent antifungal efficacy as measured by mycological and clinical endpoints. The highest degree of clinical and mycological efficacy was demonstrated by 2% NVC-422 in 1% Noveon Gel. These data show that NVC-422 has potent antifungal activity in vivo. Clinical evaluation of NVC-422 in the treatment of superficial infections caused by dermatophytes, including onychomycosis, is warranted.


Antifungal Agents/therapeutic use , Taurine/analogs & derivatives , Tinea/drug therapy , Trichophyton , Animals , Antifungal Agents/administration & dosage , Gels , Guinea Pigs , Male , Random Allocation , Taurine/administration & dosage , Taurine/therapeutic use , Tinea/microbiology
...